Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbfv12gALTVD Structured version   Visualization version   GIF version

Theorem csbfv12gALTVD 38645
Description: Virtual deduction proof of csbfv12gALTOLD 38562. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12gALTOLD 38562 is csbfv12gALTVD 38645 without virtual deductions and was automatically derived from csbfv12gALTVD 38645.
1:: (   𝐴𝐶   ▶   𝐴𝐶   )
2:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = { 𝑦}   )
3:1: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
4:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = { 𝐴 / 𝑥𝐵}   )
5:4: (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
6:3,5: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵 }) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
7:1: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
8:6,2: (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ { 𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
9:7,8: (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})    )
10:9: (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
11:10: (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
12:1: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
13:11,12: (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦 }}   )
14:13: (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 {𝐴 / 𝑥𝐵}) = {𝑦}}   )
15:1: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
16:14,15: (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
17:: (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
18:17: 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}}
19:1,18: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
20:16,19: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
21:: (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
22:20,21: (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
qed:22: (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbfv12gALTVD (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Proof of Theorem csbfv12gALTVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 38299 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴𝐶   )
2 sbceqg 3961 . . . . . . . . . . 11 (𝐴𝐶 → ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}))
31, 2e1a 38361 . . . . . . . . . 10 (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦})   )
4 csbima12 5447 . . . . . . . . . . . . . 14 𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})
54a1i 11 . . . . . . . . . . . . 13 (𝐴𝐶𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}))
61, 5e1a 38361 . . . . . . . . . . . 12 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵})   )
7 csbsng 4219 . . . . . . . . . . . . . 14 (𝐴𝐶𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})
81, 7e1a 38361 . . . . . . . . . . . . 13 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵}   )
9 imaeq2 5426 . . . . . . . . . . . . 13 (𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵} → (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}))
108, 9e1a 38361 . . . . . . . . . . . 12 (   𝐴𝐶   ▶   (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
11 eqeq1 2625 . . . . . . . . . . . . 13 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) → (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) ↔ (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})))
1211biimprd 238 . . . . . . . . . . . 12 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) → ((𝐴 / 𝑥𝐹𝐴 / 𝑥{𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) → 𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})))
136, 10, 12e11 38422 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵})   )
14 csbconstg 3531 . . . . . . . . . . . 12 (𝐴𝐶𝐴 / 𝑥{𝑦} = {𝑦})
151, 14e1a 38361 . . . . . . . . . . 11 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦} = {𝑦}   )
16 eqeq12 2634 . . . . . . . . . . . 12 ((𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) ∧ 𝐴 / 𝑥{𝑦} = {𝑦}) → (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}))
1716ex 450 . . . . . . . . . . 11 (𝐴 / 𝑥(𝐹 “ {𝐵}) = (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) → (𝐴 / 𝑥{𝑦} = {𝑦} → (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
1813, 15, 17e11 38422 . . . . . . . . . 10 (   𝐴𝐶   ▶   (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
19 bibi1 341 . . . . . . . . . . 11 (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}) → (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) ↔ (𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
2019biimprd 238 . . . . . . . . . 10 (([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ 𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦}) → ((𝐴 / 𝑥(𝐹 “ {𝐵}) = 𝐴 / 𝑥{𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) → ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})))
213, 18, 20e11 38422 . . . . . . . . 9 (   𝐴𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
2221gen11 38350 . . . . . . . 8 (   𝐴𝐶   ▶   𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦})   )
23 abbi 2734 . . . . . . . . 9 (∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) ↔ {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}})
2423biimpi 206 . . . . . . . 8 (∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}) → {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}})
2522, 24e1a 38361 . . . . . . 7 (   𝐴𝐶   ▶   {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
26 csbab 3985 . . . . . . . . 9 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}
2726a1i 11 . . . . . . . 8 (𝐴𝐶𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}})
281, 27e1a 38361 . . . . . . 7 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   )
29 eqeq2 2632 . . . . . . . 8 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3029biimpd 219 . . . . . . 7 ({𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦[𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3125, 28, 30e11 38422 . . . . . 6 (   𝐴𝐶   ▶   𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
32 unieq 4415 . . . . . 6 (𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}})
3331, 32e1a 38361 . . . . 5 (   𝐴𝐶   ▶    𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
34 csbuni 4437 . . . . . . 7 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
3534a1i 11 . . . . . 6 (𝐴𝐶𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}})
361, 35e1a 38361 . . . . 5 (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
37 eqeq2 2632 . . . . . 6 ( 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3837biimpd 219 . . . . 5 ( 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = 𝐴 / 𝑥{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
3933, 36, 38e11 38422 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
40 dffv4 6150 . . . . . 6 (𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
4140ax-gen 1719 . . . . 5 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}
42 csbeq2 3522 . . . . . 6 (∀𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}})
4342a1i 11 . . . . 5 (𝐴𝐶 → (∀𝑥(𝐹𝐵) = {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}))
441, 41, 43e10 38428 . . . 4 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   )
45 eqeq2 2632 . . . . 5 (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} ↔ 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
4645biimpd 219 . . . 4 (𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = 𝐴 / 𝑥 {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
4739, 44, 46e11 38422 . . 3 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}   )
48 dffv4 6150 . . 3 (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}
49 eqeq2 2632 . . . 4 ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → (𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) ↔ 𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}}))
5049biimprcd 240 . . 3 (𝐴 / 𝑥(𝐹𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → ((𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵) = {𝑦 ∣ (𝐴 / 𝑥𝐹 “ {𝐴 / 𝑥𝐵}) = {𝑦}} → 𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)))
5147, 48, 50e10 38428 . 2 (   𝐴𝐶   ▶   𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)   )
5251in1 38296 1 (𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478   = wceq 1480  wcel 1987  {cab 2607  [wsbc 3421  csb 3518  {csn 4153   cuni 4407  cima 5082  cfv 5852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-cnv 5087  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fv 5860  df-vd1 38295
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator