MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbhypf Structured version   Visualization version   GIF version

Theorem csbhypf 3514
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3222 for class substitution version. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
csbhypf.1 𝑥𝐴
csbhypf.2 𝑥𝐶
csbhypf.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbhypf (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem csbhypf
StepHypRef Expression
1 csbhypf.1 . . . 4 𝑥𝐴
21nfeq2 2762 . . 3 𝑥 𝑦 = 𝐴
3 nfcsb1v 3511 . . . 4 𝑥𝑦 / 𝑥𝐵
4 csbhypf.2 . . . 4 𝑥𝐶
53, 4nfeq 2758 . . 3 𝑥𝑦 / 𝑥𝐵 = 𝐶
62, 5nfim 1812 . 2 𝑥(𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
7 eqeq1 2610 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
8 csbeq1a 3504 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
98eqeq1d 2608 . . 3 (𝑥 = 𝑦 → (𝐵 = 𝐶𝑦 / 𝑥𝐵 = 𝐶))
107, 9imbi12d 332 . 2 (𝑥 = 𝑦 → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)))
11 csbhypf.3 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
126, 10, 11chvar 2245 1 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wnfc 2734  csb 3495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-sbc 3399  df-csb 3496
This theorem is referenced by:  disji2  4560  disjprg  4569  disjxun  4572  tfisi  6924  coe1fzgsumdlem  19435  evl1gsumdlem  19484  iundisj2  23038  disji2f  28575  disjif2  28579  iundisj2f  28588  iundisj2fi  28746
  Copyright terms: Public domain W3C validator