Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbhypf Structured version   Visualization version   GIF version

Theorem csbhypf 3585
 Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 3284 for class substitution version. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
csbhypf.1 𝑥𝐴
csbhypf.2 𝑥𝐶
csbhypf.3 (𝑥 = 𝐴𝐵 = 𝐶)
Assertion
Ref Expression
csbhypf (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem csbhypf
StepHypRef Expression
1 csbhypf.1 . . . 4 𝑥𝐴
21nfeq2 2809 . . 3 𝑥 𝑦 = 𝐴
3 nfcsb1v 3582 . . . 4 𝑥𝑦 / 𝑥𝐵
4 csbhypf.2 . . . 4 𝑥𝐶
53, 4nfeq 2805 . . 3 𝑥𝑦 / 𝑥𝐵 = 𝐶
62, 5nfim 1865 . 2 𝑥(𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
7 eqeq1 2655 . . 3 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
8 csbeq1a 3575 . . . 4 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
98eqeq1d 2653 . . 3 (𝑥 = 𝑦 → (𝐵 = 𝐶𝑦 / 𝑥𝐵 = 𝐶))
107, 9imbi12d 333 . 2 (𝑥 = 𝑦 → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)))
11 csbhypf.3 . 2 (𝑥 = 𝐴𝐵 = 𝐶)
126, 10, 11chvar 2298 1 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523  Ⅎwnfc 2780  ⦋csb 3566 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-sbc 3469  df-csb 3567 This theorem is referenced by:  disji2  4668  disjprg  4680  disjxun  4683  tfisi  7100  coe1fzgsumdlem  19719  evl1gsumdlem  19768  iundisj2  23363  disji2f  29516  disjif2  29520  iundisj2f  29529  iundisj2fi  29684
 Copyright terms: Public domain W3C validator