MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbiebt Structured version   Visualization version   GIF version

Theorem csbiebt 3586
Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf 3590.) (Contributed by NM, 11-Nov-2005.)
Assertion
Ref Expression
csbiebt ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝑉(𝑥)

Proof of Theorem csbiebt
StepHypRef Expression
1 elex 3243 . 2 (𝐴𝑉𝐴 ∈ V)
2 spsbc 3481 . . . . 5 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
32adantr 480 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → [𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶)))
4 simpl 472 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝐴 ∈ V)
5 biimt 349 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶 ↔ (𝑥 = 𝐴𝐵 = 𝐶)))
6 csbeq1a 3575 . . . . . . . 8 (𝑥 = 𝐴𝐵 = 𝐴 / 𝑥𝐵)
76eqeq1d 2653 . . . . . . 7 (𝑥 = 𝐴 → (𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐶))
85, 7bitr3d 270 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
98adantl 481 . . . . 5 (((𝐴 ∈ V ∧ 𝑥𝐶) ∧ 𝑥 = 𝐴) → ((𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
10 nfv 1883 . . . . . 6 𝑥 𝐴 ∈ V
11 nfnfc1 2796 . . . . . 6 𝑥𝑥𝐶
1210, 11nfan 1868 . . . . 5 𝑥(𝐴 ∈ V ∧ 𝑥𝐶)
13 nfcsb1v 3582 . . . . . . 7 𝑥𝐴 / 𝑥𝐵
1413a1i 11 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐴 / 𝑥𝐵)
15 simpr 476 . . . . . 6 ((𝐴 ∈ V ∧ 𝑥𝐶) → 𝑥𝐶)
1614, 15nfeqd 2801 . . . . 5 ((𝐴 ∈ V ∧ 𝑥𝐶) → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
174, 9, 12, 16sbciedf 3504 . . . 4 ((𝐴 ∈ V ∧ 𝑥𝐶) → ([𝐴 / 𝑥](𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
183, 17sylibd 229 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) → 𝐴 / 𝑥𝐵 = 𝐶))
1913a1i 11 . . . . . . . 8 (𝑥𝐶𝑥𝐴 / 𝑥𝐵)
20 id 22 . . . . . . . 8 (𝑥𝐶𝑥𝐶)
2119, 20nfeqd 2801 . . . . . . 7 (𝑥𝐶 → Ⅎ𝑥𝐴 / 𝑥𝐵 = 𝐶)
2211, 21nfan1 2106 . . . . . 6 𝑥(𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶)
237biimprcd 240 . . . . . . 7 (𝐴 / 𝑥𝐵 = 𝐶 → (𝑥 = 𝐴𝐵 = 𝐶))
2423adantl 481 . . . . . 6 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → (𝑥 = 𝐴𝐵 = 𝐶))
2522, 24alrimi 2120 . . . . 5 ((𝑥𝐶𝐴 / 𝑥𝐵 = 𝐶) → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶))
2625ex 449 . . . 4 (𝑥𝐶 → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2726adantl 481 . . 3 ((𝐴 ∈ V ∧ 𝑥𝐶) → (𝐴 / 𝑥𝐵 = 𝐶 → ∀𝑥(𝑥 = 𝐴𝐵 = 𝐶)))
2818, 27impbid 202 . 2 ((𝐴 ∈ V ∧ 𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
291, 28sylan 487 1 ((𝐴𝑉𝑥𝐶) → (∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ↔ 𝐴 / 𝑥𝐵 = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  wnfc 2780  Vcvv 3231  [wsbc 3468  csb 3566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sbc 3469  df-csb 3567
This theorem is referenced by:  csbiedf  3587  csbieb  3588  csbiegf  3590
  Copyright terms: Public domain W3C validator