Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbingVD Structured version   Visualization version   GIF version

Theorem csbingVD 39434
Description: Virtual deduction proof of csbingOLD 39369. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbingOLD 39369 is csbingVD 39434 without virtual deductions and was automatically derived from csbingVD 39434.
1:: (   𝐴𝐵   ▶   𝐴𝐵   )
2:: (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷) }
20:2: 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦 𝐷)}
30:1,20: (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
3:1,30: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
4:1: (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶 𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
5:3,4: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
6:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦 𝐴 / 𝑥𝐶)   )
7:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦 𝐴 / 𝑥𝐷)   )
8:6,7: (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶 [𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷 ))   )
9:1: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
10:9,8: (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶 𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
11:10: (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦 𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
12:11: (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶 𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
13:5,12: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
14:: (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = { 𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
15:13,14: (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
qed:15: (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = ( 𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
csbingVD (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

Proof of Theorem csbingVD
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 idn1 39107 . . . . . 6 (   𝐴𝐵   ▶   𝐴𝐵   )
2 df-in 3614 . . . . . . . 8 (𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}
32ax-gen 1762 . . . . . . 7 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}
4 spsbc 3481 . . . . . . 7 (𝐴𝐵 → (∀𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} → [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
51, 3, 4e10 39236 . . . . . 6 (   𝐴𝐵   ▶   [𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
6 sbceqg 4017 . . . . . . 7 (𝐴𝐵 → ([𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} ↔ 𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
76biimpd 219 . . . . . 6 (𝐴𝐵 → ([𝐴 / 𝑥](𝐶𝐷) = {𝑦 ∣ (𝑦𝐶𝑦𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}))
81, 5, 7e11 39230 . . . . 5 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)}   )
9 csbabgOLD 39367 . . . . . 6 (𝐴𝐵𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)})
101, 9e1a 39169 . . . . 5 (   𝐴𝐵   ▶   𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
11 eqeq1 2655 . . . . . 6 (𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} ↔ 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}))
1211biimprd 238 . . . . 5 (𝐴 / 𝑥(𝐶𝐷) = 𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥{𝑦 ∣ (𝑦𝐶𝑦𝐷)} = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}))
138, 10, 12e11 39230 . . . 4 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)}   )
14 sbcangOLD 39056 . . . . . . . 8 (𝐴𝐵 → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)))
151, 14e1a 39169 . . . . . . 7 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷))   )
16 sbcel2gOLD 39072 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶))
171, 16e1a 39169 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶)   )
18 sbcel2gOLD 39072 . . . . . . . . 9 (𝐴𝐵 → ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷))
191, 18e1a 39169 . . . . . . . 8 (   𝐴𝐵   ▶   ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)   )
20 pm4.38 934 . . . . . . . . 9 ((([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) ∧ ([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷)) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)))
2120ex 449 . . . . . . . 8 (([𝐴 / 𝑥]𝑦𝐶𝑦𝐴 / 𝑥𝐶) → (([𝐴 / 𝑥]𝑦𝐷𝑦𝐴 / 𝑥𝐷) → (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2217, 19, 21e11 39230 . . . . . . 7 (   𝐴𝐵   ▶   (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
23 bibi1 340 . . . . . . . 8 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ (([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2423biimprd 238 . . . . . . 7 (([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ ([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷)) → ((([𝐴 / 𝑥]𝑦𝐶[𝐴 / 𝑥]𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))))
2515, 22, 24e11 39230 . . . . . 6 (   𝐴𝐵   ▶   ([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
2625gen11 39158 . . . . 5 (   𝐴𝐵   ▶   𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷))   )
27 abbi 2766 . . . . . 6 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) ↔ {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)})
2827biimpi 206 . . . . 5 (∀𝑦([𝐴 / 𝑥](𝑦𝐶𝑦𝐷) ↔ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)) → {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)})
2926, 28e1a 39169 . . . 4 (   𝐴𝐵   ▶   {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
30 eqeq1 2655 . . . . 5 (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} ↔ {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3130biimprd 238 . . . 4 (𝐴 / 𝑥(𝐶𝐷) = {𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} → ({𝑦[𝐴 / 𝑥](𝑦𝐶𝑦𝐷)} = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3213, 29, 31e11 39230 . . 3 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}   )
33 df-in 3614 . . 3 (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}
34 eqeq2 2662 . . . 4 ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → (𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) ↔ 𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)}))
3534biimprcd 240 . . 3 (𝐴 / 𝑥(𝐶𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → ((𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷) = {𝑦 ∣ (𝑦𝐴 / 𝑥𝐶𝑦𝐴 / 𝑥𝐷)} → 𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)))
3632, 33, 35e10 39236 . 2 (   𝐴𝐵   ▶   𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷)   )
3736in1 39104 1 (𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wal 1521   = wceq 1523  wcel 2030  {cab 2637  [wsbc 3468  csb 3566  cin 3606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-in 3614  df-nul 3949  df-vd1 39103
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator