MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbprc Structured version   Visualization version   GIF version

Theorem csbprc 4123
Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018.) (Proof shortened by JJ, 27-Aug-2021.)
Assertion
Ref Expression
csbprc 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)

Proof of Theorem csbprc
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3586 . . . 4 ([𝐴 / 𝑥]𝑦𝐵𝐴 ∈ V)
2 falim 1647 . . . 4 (⊥ → 𝐴 ∈ V)
31, 2pm5.21ni 366 . . 3 𝐴 ∈ V → ([𝐴 / 𝑥]𝑦𝐵 ↔ ⊥))
43abbidv 2879 . 2 𝐴 ∈ V → {𝑦[𝐴 / 𝑥]𝑦𝐵} = {𝑦 ∣ ⊥})
5 df-csb 3675 . 2 𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
6 fal 1639 . . . 4 ¬ ⊥
76abf 4121 . . 3 {𝑦 ∣ ⊥} = ∅
87eqcomi 2769 . 2 ∅ = {𝑦 ∣ ⊥}
94, 5, 83eqtr4g 2819 1 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1632  wfal 1637  wcel 2139  {cab 2746  Vcvv 3340  [wsbc 3576  csb 3674  c0 4058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-nul 4059
This theorem is referenced by:  csb0  4125  sbcel12  4126  sbcne12  4129  sbcel2  4132  csbidm  4145  csbun  4152  csbin  4153  csbif  4282  csbuni  4618  sbcbr123  4858  sbcbr  4859  csbexg  4944  csbopab  5158  csbxp  5357  csbres  5554  csbima12  5641  csbrn  5754  csbiota  6042  csbfv12  6392  csbfv  6394  csbriota  6786  csbov123  6850  csbov  6851  csbdif  33482
  Copyright terms: Public domain W3C validator