Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbpredg Structured version   Visualization version   GIF version

Theorem csbpredg 32804
Description: Move class substitution in and out of the predecessor class of a relationship. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbpredg (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋))

Proof of Theorem csbpredg
StepHypRef Expression
1 csbin 3982 . . 3 𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷𝐴 / 𝑥(𝑅 “ {𝑋}))
2 csbima12 5442 . . . . 5 𝐴 / 𝑥(𝑅 “ {𝑋}) = (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋})
3 csbcnv 5266 . . . . . . 7 𝐴 / 𝑥𝑅 = 𝐴 / 𝑥𝑅
43imaeq1i 5422 . . . . . 6 (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋})
5 csbsng 4214 . . . . . . 7 (𝐴𝑉𝐴 / 𝑥{𝑋} = {𝐴 / 𝑥𝑋})
65imaeq2d 5425 . . . . . 6 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
74, 6syl5eqr 2669 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥{𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
82, 7syl5eq 2667 . . . 4 (𝐴𝑉𝐴 / 𝑥(𝑅 “ {𝑋}) = (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
98ineq2d 3792 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝐷𝐴 / 𝑥(𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋})))
101, 9syl5eq 2667 . 2 (𝐴𝑉𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋})) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋})))
11 df-pred 5639 . . 3 Pred(𝑅, 𝐷, 𝑋) = (𝐷 ∩ (𝑅 “ {𝑋}))
1211csbeq2i 3965 . 2 𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = 𝐴 / 𝑥(𝐷 ∩ (𝑅 “ {𝑋}))
13 df-pred 5639 . 2 Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋) = (𝐴 / 𝑥𝐷 ∩ (𝐴 / 𝑥𝑅 “ {𝐴 / 𝑥𝑋}))
1410, 12, 133eqtr4g 2680 1 (𝐴𝑉𝐴 / 𝑥Pred(𝑅, 𝐷, 𝑋) = Pred(𝐴 / 𝑥𝑅, 𝐴 / 𝑥𝐷, 𝐴 / 𝑥𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  csb 3514  cin 3554  {csn 4148  ccnv 5073  cima 5077  Predcpred 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-br 4614  df-opab 4674  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639
This theorem is referenced by:  csbwrecsg  32805
  Copyright terms: Public domain W3C validator