Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrecsg Structured version   Visualization version   GIF version

Theorem csbrecsg 32803
Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbrecsg (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))

Proof of Theorem csbrecsg
StepHypRef Expression
1 csbwrecsg 32802 . . 3 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
2 csbconstg 3527 . . . 4 (𝐴𝑉𝐴 / 𝑥 E = E )
3 wrecseq1 7355 . . . 4 (𝐴 / 𝑥 E = E → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
42, 3syl 17 . . 3 (𝐴𝑉 → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
5 csbconstg 3527 . . . 4 (𝐴𝑉𝐴 / 𝑥On = On)
6 wrecseq2 7356 . . . 4 (𝐴 / 𝑥On = On → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
75, 6syl 17 . . 3 (𝐴𝑉 → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
81, 4, 73eqtrd 2659 . 2 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
9 df-recs 7413 . . 3 recs(𝐹) = wrecs( E , On, 𝐹)
109csbeq2i 3965 . 2 𝐴 / 𝑥recs(𝐹) = 𝐴 / 𝑥wrecs( E , On, 𝐹)
11 df-recs 7413 . 2 recs(𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹)
128, 10, 113eqtr4g 2680 1 (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987  csb 3514   E cep 4983  Oncon0 5682  wrecscwrecs 7351  recscrecs 7412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-xp 5080  df-cnv 5082  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-iota 5810  df-fv 5855  df-wrecs 7352  df-recs 7413
This theorem is referenced by:  csbrdgg  32804
  Copyright terms: Public domain W3C validator