![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbtt | Structured version Visualization version GIF version |
Description: Substitution doesn't affect a constant 𝐵 (in which 𝑥 is not free). (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
csbtt | ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb 3675 | . 2 ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} | |
2 | nfcr 2894 | . . . 4 ⊢ (Ⅎ𝑥𝐵 → Ⅎ𝑥 𝑦 ∈ 𝐵) | |
3 | sbctt 3641 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥 𝑦 ∈ 𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | sylan2 492 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵)) |
5 | 4 | abbi1dv 2881 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} = 𝐵) |
6 | 1, 5 | syl5eq 2806 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝐵) → ⦋𝐴 / 𝑥⦌𝐵 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 Ⅎwnf 1857 ∈ wcel 2139 {cab 2746 Ⅎwnfc 2889 [wsbc 3576 ⦋csb 3674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-sbc 3577 df-csb 3675 |
This theorem is referenced by: csbconstgf 3686 sbnfc2 4150 constlimc 40359 |
Copyright terms: Public domain | W3C validator |