MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbuni Structured version   Visualization version   GIF version

Theorem csbuni 4464
Description: Distribute proper substitution through the union of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 22-Aug-2018.)
Assertion
Ref Expression
csbuni 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵

Proof of Theorem csbuni
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbab 4006 . . . 4 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)}
2 sbcex2 3484 . . . . . 6 ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵))
3 sbcan 3476 . . . . . . . 8 ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵))
4 sbcg 3501 . . . . . . . . . 10 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑧𝑦𝑧𝑦))
54anbi1d 741 . . . . . . . . 9 (𝐴 ∈ V → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦[𝐴 / 𝑥]𝑦𝐵)))
6 sbcel2 3987 . . . . . . . . . 10 ([𝐴 / 𝑥]𝑦𝐵𝑦𝐴 / 𝑥𝐵)
76anbi2i 730 . . . . . . . . 9 ((𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵))
85, 7syl6bb 276 . . . . . . . 8 (𝐴 ∈ V → (([𝐴 / 𝑥]𝑧𝑦[𝐴 / 𝑥]𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
93, 8syl5bb 272 . . . . . . 7 (𝐴 ∈ V → ([𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ (𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
109exbidv 1849 . . . . . 6 (𝐴 ∈ V → (∃𝑦[𝐴 / 𝑥](𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
112, 10syl5bb 272 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵) ↔ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)))
1211abbidv 2740 . . . 4 (𝐴 ∈ V → {𝑧[𝐴 / 𝑥]𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
131, 12syl5eq 2667 . . 3 (𝐴 ∈ V → 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)} = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)})
14 df-uni 4435 . . . 4 𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
1514csbeq2i 3991 . . 3 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥{𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐵)}
16 df-uni 4435 . . 3 𝐴 / 𝑥𝐵 = {𝑧 ∣ ∃𝑦(𝑧𝑦𝑦𝐴 / 𝑥𝐵)}
1713, 15, 163eqtr4g 2680 . 2 (𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
18 csbprc 3978 . . 3 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅)
19 csbprc 3978 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
2019unieqd 4444 . . . 4 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
21 uni0 4463 . . . 4 ∅ = ∅
2220, 21syl6req 2672 . . 3 𝐴 ∈ V → ∅ = 𝐴 / 𝑥𝐵)
2318, 22eqtrd 2655 . 2 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)
2417, 23pm2.61i 176 1 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1482  wex 1703  wcel 1989  {cab 2607  Vcvv 3198  [wsbc 3433  csb 3531  c0 3913   cuni 4434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ral 2916  df-rex 2917  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-in 3579  df-ss 3586  df-nul 3914  df-sn 4176  df-uni 4435
This theorem is referenced by:  csbwrecsg  33153  csbfv12gALTOLD  38878  csbfv12gALTVD  38961
  Copyright terms: Public domain W3C validator