MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshf1 Structured version   Visualization version   GIF version

Theorem cshf1 14174
Description: Cyclically shifting a word which contains a symbol at most once results in a word which contains a symbol at most once. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshf1 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)

Proof of Theorem cshf1
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6577 . . . . 5 (𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹:(0..^(♯‘𝐹))⟶𝐴)
2 iswrdi 13868 . . . . 5 (𝐹:(0..^(♯‘𝐹))⟶𝐴𝐹 ∈ Word 𝐴)
31, 2syl 17 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴)
4 cshwf 14164 . . . . . . . . 9 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴)
543adant1 1126 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴)
65adantr 483 . . . . . . 7 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴)
7 feq1 6497 . . . . . . . 8 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴))
87adantl 484 . . . . . . 7 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ↔ (𝐹 cyclShift 𝑆):(0..^(♯‘𝐹))⟶𝐴))
96, 8mpbird 259 . . . . . 6 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))⟶𝐴)
10 dff13 7015 . . . . . . . 8 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
11 fveq1 6671 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
12113ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
1312adantr 483 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑖) = ((𝐹 cyclShift 𝑆)‘𝑖))
14 cshwidxmod 14167 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑖 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))))
15143expia 1117 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
16153adant1 1126 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
1716com12 32 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
1817adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹)))))
1918impcom 410 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))))
2013, 19eqtrd 2858 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑖) = (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))))
21 fveq1 6671 . . . . . . . . . . . . . . . . . 18 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
22213ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
2322adantr 483 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑗) = ((𝐹 cyclShift 𝑆)‘𝑗))
24 cshwidxmod 14167 . . . . . . . . . . . . . . . . . . . 20 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
25243expia 1117 . . . . . . . . . . . . . . . . . . 19 ((𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
26253adant1 1126 . . . . . . . . . . . . . . . . . 18 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
2726adantld 493 . . . . . . . . . . . . . . . . 17 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
2827imp 409 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐹 cyclShift 𝑆)‘𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
2923, 28eqtrd 2858 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝐺𝑗) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
3020, 29eqeq12d 2839 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
3130adantlr 713 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
32 elfzo0 13081 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^(♯‘𝐹)) ↔ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑖 < (♯‘𝐹)))
33 nn0z 12008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑖 ∈ ℕ0𝑖 ∈ ℤ)
3433adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → 𝑖 ∈ ℤ)
3534adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑖 ∈ ℤ)
36 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
3735, 36zaddcld 12094 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (𝑖 + 𝑆) ∈ ℤ)
38 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℕ)
3938adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (♯‘𝐹) ∈ ℕ)
4037, 39jca 514 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
4140ex 415 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑆 ∈ ℤ → ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
42413ad2ant3 1131 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
44433adant3 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑖 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑖 < (♯‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4532, 44sylbi 219 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^(♯‘𝐹)) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4645adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
4746impcom 410 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
48 zmodfzo 13265 . . . . . . . . . . . . . . . . . 18 (((𝑖 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ) → ((𝑖 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
4947, 48syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
50 elfzo0 13081 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑗 ∈ (0..^(♯‘𝐹)) ↔ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑗 < (♯‘𝐹)))
51 nn0z 12008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑗 ∈ ℕ0𝑗 ∈ ℤ)
5251adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → 𝑗 ∈ ℤ)
5352adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑗 ∈ ℤ)
54 simpl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → 𝑆 ∈ ℤ)
5553, 54zaddcld 12094 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (𝑗 + 𝑆) ∈ ℤ)
56 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (♯‘𝐹) ∈ ℕ)
5756adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → (♯‘𝐹) ∈ ℕ)
5855, 57jca 514 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑆 ∈ ℤ ∧ (𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
5958expcom 416 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
60593adant3 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑗 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ ∧ 𝑗 < (♯‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6150, 60sylbi 219 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^(♯‘𝐹)) → (𝑆 ∈ ℤ → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6261com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑆 ∈ ℤ → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
63623ad2ant3 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → (𝑗 ∈ (0..^(♯‘𝐹)) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6463adantld 493 . . . . . . . . . . . . . . . . . . 19 ((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) → ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ)))
6564imp 409 . . . . . . . . . . . . . . . . . 18 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ))
66 zmodfzo 13265 . . . . . . . . . . . . . . . . . 18 (((𝑗 + 𝑆) ∈ ℤ ∧ (♯‘𝐹) ∈ ℕ) → ((𝑗 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
6765, 66syl 17 . . . . . . . . . . . . . . . . 17 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝑗 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)))
68 fveqeq2 6681 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (♯‘𝐹)) → ((𝐹𝑥) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦)))
69 eqeq1 2827 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑖 + 𝑆) mod (♯‘𝐹)) → (𝑥 = 𝑦 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦))
7068, 69imbi12d 347 . . . . . . . . . . . . . . . . . 18 (𝑥 = ((𝑖 + 𝑆) mod (♯‘𝐹)) → (((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦)))
71 fveq2 6672 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → (𝐹𝑦) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))))
7271eqeq2d 2834 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦) ↔ (𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹)))))
73 eqeq2 2835 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
7472, 73imbi12d 347 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((𝑗 + 𝑆) mod (♯‘𝐹)) → (((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹𝑦) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = 𝑦) ↔ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))))
7570, 74rspc2v 3635 . . . . . . . . . . . . . . . . 17 ((((𝑖 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹)) ∧ ((𝑗 + 𝑆) mod (♯‘𝐹)) ∈ (0..^(♯‘𝐹))) → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))))
7649, 67, 75syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))))
77 simpr 487 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
78 addmodlteq 13317 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)) ↔ 𝑖 = 𝑗))
79783expa 1114 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) ∧ 𝑆 ∈ ℤ) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)) ↔ 𝑖 = 𝑗))
8079ancoms 461 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)) ↔ 𝑖 = 𝑗))
8180bicomd 225 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ ℤ ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
82813ad2antl3 1183 . . . . . . . . . . . . . . . . . . 19 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
8382adantr 483 . . . . . . . . . . . . . . . . . 18 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))) → (𝑖 = 𝑗 ↔ ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))))
8477, 83sylibrd 261 . . . . . . . . . . . . . . . . 17 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) ∧ ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗))
8584ex 415 . . . . . . . . . . . . . . . 16 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝑖 + 𝑆) mod (♯‘𝐹)) = ((𝑗 + 𝑆) mod (♯‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗)))
8676, 85syld 47 . . . . . . . . . . . . . . 15 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗)))
8786impancom 454 . . . . . . . . . . . . . 14 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ((𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗)))
8887imp 409 . . . . . . . . . . . . 13 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐹‘((𝑖 + 𝑆) mod (♯‘𝐹))) = (𝐹‘((𝑗 + 𝑆) mod (♯‘𝐹))) → 𝑖 = 𝑗))
8931, 88sylbid 242 . . . . . . . . . . . 12 ((((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) ∧ (𝑖 ∈ (0..^(♯‘𝐹)) ∧ 𝑗 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
9089ralrimivva 3193 . . . . . . . . . . 11 (((𝐺 = (𝐹 cyclShift 𝑆) ∧ 𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
91903exp1 1348 . . . . . . . . . 10 (𝐺 = (𝐹 cyclShift 𝑆) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9291com14 96 . . . . . . . . 9 (∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9392adantl 484 . . . . . . . 8 ((𝐹:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑥 ∈ (0..^(♯‘𝐹))∀𝑦 ∈ (0..^(♯‘𝐹))((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)) → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
9410, 93sylbi 219 . . . . . . 7 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
95943imp1 1343 . . . . . 6 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))
969, 95jca 514 . . . . 5 (((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝐹 ∈ Word 𝐴𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
97963exp1 1348 . . . 4 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 → (𝐹 ∈ Word 𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗))))))
983, 97mpd 15 . . 3 (𝐹:(0..^(♯‘𝐹))–1-1𝐴 → (𝑆 ∈ ℤ → (𝐺 = (𝐹 cyclShift 𝑆) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))))
99983imp 1107 . 2 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
100 dff13 7015 . 2 (𝐺:(0..^(♯‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(♯‘𝐹))⟶𝐴 ∧ ∀𝑖 ∈ (0..^(♯‘𝐹))∀𝑗 ∈ (0..^(♯‘𝐹))((𝐺𝑖) = (𝐺𝑗) → 𝑖 = 𝑗)))
10199, 100sylibr 236 1 ((𝐹:(0..^(♯‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(♯‘𝐹))–1-1𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140   class class class wbr 5068  wf 6353  1-1wf1 6354  cfv 6357  (class class class)co 7158  0cc0 10539   + caddc 10542   < clt 10677  cn 11640  0cn0 11900  cz 11984  ..^cfzo 13036   mod cmo 13240  chash 13693  Word cword 13864   cyclShift ccsh 14152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-hash 13694  df-word 13865  df-concat 13925  df-substr 14005  df-pfx 14035  df-csh 14153
This theorem is referenced by:  cshinj  14175  cshf1o  30638
  Copyright terms: Public domain W3C validator