MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshimadifsn0 Structured version   Visualization version   GIF version

Theorem cshimadifsn0 13796
Description: The image of a cyclically shifted word under its domain without its upper bound is the image of a cyclically shifted word under its domain without the number of shifted symbols. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
cshimadifsn0 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))

Proof of Theorem cshimadifsn0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cshimadifsn 13795 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift 𝐽) “ (1..^𝑁)))
2 elfzoel2 12683 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
3 elfzom1elp1fzo1 12782 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
43ex 449 . . . . . . . 8 (𝑁 ∈ ℤ → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
52, 4syl 17 . . . . . . 7 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
653ad2ant3 1130 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → (𝑦 + 1) ∈ (1..^𝑁)))
76imp 444 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
8 elfzo1elm1fzo0 12783 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
98adantl 473 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → (𝑥 − 1) ∈ (0..^(𝑁 − 1)))
10 oveq1 6821 . . . . . . . 8 (𝑦 = (𝑥 − 1) → (𝑦 + 1) = ((𝑥 − 1) + 1))
1110eqeq2d 2770 . . . . . . 7 (𝑦 = (𝑥 − 1) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
1211adantl 473 . . . . . 6 ((((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) ∧ 𝑦 = (𝑥 − 1)) → (𝑥 = (𝑦 + 1) ↔ 𝑥 = ((𝑥 − 1) + 1)))
13 elfzoelz 12684 . . . . . . . . . 10 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℤ)
1413zcnd 11695 . . . . . . . . 9 (𝑥 ∈ (1..^𝑁) → 𝑥 ∈ ℂ)
15 npcan1 10667 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥 − 1) + 1) = 𝑥)
1614, 15syl 17 . . . . . . . 8 (𝑥 ∈ (1..^𝑁) → ((𝑥 − 1) + 1) = 𝑥)
1716eqcomd 2766 . . . . . . 7 (𝑥 ∈ (1..^𝑁) → 𝑥 = ((𝑥 − 1) + 1))
1817adantl 473 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → 𝑥 = ((𝑥 − 1) + 1))
199, 12, 18rspcedvd 3456 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑥 ∈ (1..^𝑁)) → ∃𝑦 ∈ (0..^(𝑁 − 1))𝑥 = (𝑦 + 1))
20 fveq2 6353 . . . . . . . 8 (𝑥 = (𝑦 + 1) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
21203ad2ant3 1130 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)))
22 elfzoelz 12684 . . . . . . . . . . . . . 14 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℤ)
2322zcnd 11695 . . . . . . . . . . . . 13 (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ ℂ)
2423adantl 473 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ ℂ)
25 elfzoelz 12684 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
2625zcnd 11695 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
27263ad2ant3 1130 . . . . . . . . . . . . 13 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℂ)
2827adantr 472 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℂ)
29 1cnd 10268 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 1 ∈ ℂ)
30 add32r 10467 . . . . . . . . . . . 12 ((𝑦 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3124, 28, 29, 30syl3anc 1477 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + (𝐽 + 1)) = ((𝑦 + 1) + 𝐽))
3231oveq1d 6829 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝑦 + (𝐽 + 1)) mod (♯‘𝐹)) = (((𝑦 + 1) + 𝐽) mod (♯‘𝐹)))
3332fveq2d 6357 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
34 simpl1 1228 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐹 ∈ Word 𝑆)
3525peano2zd 11697 . . . . . . . . . . . 12 (𝐽 ∈ (0..^𝑁) → (𝐽 + 1) ∈ ℤ)
36353ad2ant3 1130 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐽 + 1) ∈ ℤ)
3736adantr 472 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝐽 + 1) ∈ ℤ)
38 fzossrbm1 12711 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
392, 38syl 17 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
4039sseld 3743 . . . . . . . . . . . . 13 (𝐽 ∈ (0..^𝑁) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
41403ad2ant3 1130 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^(𝑁 − 1)) → 𝑦 ∈ (0..^𝑁)))
4241imp 444 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^𝑁))
43 oveq2 6822 . . . . . . . . . . . . . 14 (𝑁 = (♯‘𝐹) → (0..^𝑁) = (0..^(♯‘𝐹)))
4443eleq2d 2825 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
45443ad2ant2 1129 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
4645adantr 472 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 ∈ (0..^𝑁) ↔ 𝑦 ∈ (0..^(♯‘𝐹))))
4742, 46mpbid 222 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝑦 ∈ (0..^(♯‘𝐹)))
48 cshwidxmod 13769 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))))
4934, 37, 47, 48syl3anc 1477 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = (𝐹‘((𝑦 + (𝐽 + 1)) mod (♯‘𝐹))))
50253ad2ant3 1130 . . . . . . . . . . 11 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝐽 ∈ ℤ)
5150adantr 472 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → 𝐽 ∈ ℤ)
52 fzo0ss1 12712 . . . . . . . . . . . 12 (1..^𝑁) ⊆ (0..^𝑁)
5323ad2ant3 1130 . . . . . . . . . . . . 13 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
5453, 3sylan 489 . . . . . . . . . . . 12 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (1..^𝑁))
5552, 54sseldi 3742 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^𝑁))
5643eleq2d 2825 . . . . . . . . . . . . 13 (𝑁 = (♯‘𝐹) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
57563ad2ant2 1129 . . . . . . . . . . . 12 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
5857adantr 472 . . . . . . . . . . 11 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝑦 + 1) ∈ (0..^𝑁) ↔ (𝑦 + 1) ∈ (0..^(♯‘𝐹))))
5955, 58mpbid 222 . . . . . . . . . 10 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → (𝑦 + 1) ∈ (0..^(♯‘𝐹)))
60 cshwidxmod 13769 . . . . . . . . . 10 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ ∧ (𝑦 + 1) ∈ (0..^(♯‘𝐹))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
6134, 51, 59, 60syl3anc 1477 . . . . . . . . 9 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = (𝐹‘(((𝑦 + 1) + 𝐽) mod (♯‘𝐹))))
6233, 49, 613eqtr4rd 2805 . . . . . . . 8 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1))) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
63623adant3 1127 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘(𝑦 + 1)) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6421, 63eqtrd 2794 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → ((𝐹 cyclShift 𝐽)‘𝑥) = ((𝐹 cyclShift (𝐽 + 1))‘𝑦))
6564eqeq1d 2762 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ 𝑦 ∈ (0..^(𝑁 − 1)) ∧ 𝑥 = (𝑦 + 1)) → (((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
667, 19, 65rexxfrd2 5034 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧 ↔ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧))
6766abbidv 2879 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧} = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
6825anim2i 594 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
69683adant2 1126 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆𝐽 ∈ ℤ))
70 cshwfn 13767 . . . . . 6 ((𝐹 ∈ Word 𝑆𝐽 ∈ ℤ) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
7169, 70syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)))
72 fnfun 6149 . . . . . . 7 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift 𝐽))
7372adantl 473 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift 𝐽))
74433ad2ant2 1129 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^𝑁) = (0..^(♯‘𝐹)))
7552, 74syl5sseq 3794 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
7675adantr 472 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ (0..^(♯‘𝐹)))
77 fndm 6151 . . . . . . . 8 ((𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
7877adantl 473 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift 𝐽) = (0..^(♯‘𝐹)))
7976, 78sseqtr4d 3783 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽))
8073, 79jca 555 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift 𝐽) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
8171, 80mpdan 705 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)))
82 dfimafn 6408 . . . 4 ((Fun (𝐹 cyclShift 𝐽) ∧ (1..^𝑁) ⊆ dom (𝐹 cyclShift 𝐽)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8381, 82syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = {𝑧 ∣ ∃𝑥 ∈ (1..^𝑁)((𝐹 cyclShift 𝐽)‘𝑥) = 𝑧})
8435anim2i 594 . . . . . . 7 ((𝐹 ∈ Word 𝑆𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
85843adant2 1126 . . . . . 6 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ))
86 cshwfn 13767 . . . . . 6 ((𝐹 ∈ Word 𝑆 ∧ (𝐽 + 1) ∈ ℤ) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)))
8785, 86syl 17 . . . . 5 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)))
88 fnfun 6149 . . . . . . 7 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)) → Fun (𝐹 cyclShift (𝐽 + 1)))
8988adantl 473 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → Fun (𝐹 cyclShift (𝐽 + 1)))
90393ad2ant3 1130 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^𝑁))
91 oveq2 6822 . . . . . . . . . . 11 ((♯‘𝐹) = 𝑁 → (0..^(♯‘𝐹)) = (0..^𝑁))
9291eqcoms 2768 . . . . . . . . . 10 (𝑁 = (♯‘𝐹) → (0..^(♯‘𝐹)) = (0..^𝑁))
93923ad2ant2 1129 . . . . . . . . 9 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(♯‘𝐹)) = (0..^𝑁))
9490, 93sseqtr4d 3783 . . . . . . . 8 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (0..^(𝑁 − 1)) ⊆ (0..^(♯‘𝐹)))
9594adantr 472 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (0..^(𝑁 − 1)) ⊆ (0..^(♯‘𝐹)))
96 fndm 6151 . . . . . . . 8 ((𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹)) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(♯‘𝐹)))
9796adantl 473 . . . . . . 7 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → dom (𝐹 cyclShift (𝐽 + 1)) = (0..^(♯‘𝐹)))
9895, 97sseqtr4d 3783 . . . . . 6 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1)))
9989, 98jca 555 . . . . 5 (((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) ∧ (𝐹 cyclShift (𝐽 + 1)) Fn (0..^(♯‘𝐹))) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
10087, 99mpdan 705 . . . 4 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))))
101 dfimafn 6408 . . . 4 ((Fun (𝐹 cyclShift (𝐽 + 1)) ∧ (0..^(𝑁 − 1)) ⊆ dom (𝐹 cyclShift (𝐽 + 1))) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
102100, 101syl 17 . . 3 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))) = {𝑧 ∣ ∃𝑦 ∈ (0..^(𝑁 − 1))((𝐹 cyclShift (𝐽 + 1))‘𝑦) = 𝑧})
10367, 83, 1023eqtr4d 2804 . 2 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → ((𝐹 cyclShift 𝐽) “ (1..^𝑁)) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
1041, 103eqtrd 2794 1 ((𝐹 ∈ Word 𝑆𝑁 = (♯‘𝐹) ∧ 𝐽 ∈ (0..^𝑁)) → (𝐹 “ ((0..^𝑁) ∖ {𝐽})) = ((𝐹 cyclShift (𝐽 + 1)) “ (0..^(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  {cab 2746  wrex 3051  cdif 3712  wss 3715  {csn 4321  dom cdm 5266  cima 5269  Fun wfun 6043   Fn wfn 6044  cfv 6049  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149   + caddc 10151  cmin 10478  cz 11589  ..^cfzo 12679   mod cmo 12882  chash 13331  Word cword 13497   cyclShift ccsh 13754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-ico 12394  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-hash 13332  df-word 13505  df-concat 13507  df-substr 13509  df-csh 13755
This theorem is referenced by:  eucrct2eupth  27418
  Copyright terms: Public domain W3C validator