MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshinj Structured version   Visualization version   GIF version

Theorem cshinj 13356
Description: If a word is injectiv (regarded as function), the cyclically shifted word is also injective. (Contributed by AV, 14-Mar-2021.)
Assertion
Ref Expression
cshinj ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))

Proof of Theorem cshinj
StepHypRef Expression
1 wrdf 13113 . . . . . . 7 (𝐹 ∈ Word 𝐴𝐹:(0..^(#‘𝐹))⟶𝐴)
2 df-f1 5794 . . . . . . . 8 (𝐹:(0..^(#‘𝐹))–1-1𝐴 ↔ (𝐹:(0..^(#‘𝐹))⟶𝐴 ∧ Fun 𝐹))
32biimpri 216 . . . . . . 7 ((𝐹:(0..^(#‘𝐹))⟶𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(#‘𝐹))–1-1𝐴)
41, 3sylan 486 . . . . . 6 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹) → 𝐹:(0..^(#‘𝐹))–1-1𝐴)
543adant3 1073 . . . . 5 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → 𝐹:(0..^(#‘𝐹))–1-1𝐴)
65adantr 479 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐹:(0..^(#‘𝐹))–1-1𝐴)
7 simpl3 1058 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝑆 ∈ ℤ)
8 simpr 475 . . . 4 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺 = (𝐹 cyclShift 𝑆))
9 cshf1 13355 . . . 4 ((𝐹:(0..^(#‘𝐹))–1-1𝐴𝑆 ∈ ℤ ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))–1-1𝐴)
106, 7, 8, 9syl3anc 1317 . . 3 (((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) ∧ 𝐺 = (𝐹 cyclShift 𝑆)) → 𝐺:(0..^(#‘𝐹))–1-1𝐴)
1110ex 448 . 2 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → 𝐺:(0..^(#‘𝐹))–1-1𝐴))
12 df-f1 5794 . . 3 (𝐺:(0..^(#‘𝐹))–1-1𝐴 ↔ (𝐺:(0..^(#‘𝐹))⟶𝐴 ∧ Fun 𝐺))
1312simprbi 478 . 2 (𝐺:(0..^(#‘𝐹))–1-1𝐴 → Fun 𝐺)
1411, 13syl6 34 1 ((𝐹 ∈ Word 𝐴 ∧ Fun 𝐹𝑆 ∈ ℤ) → (𝐺 = (𝐹 cyclShift 𝑆) → Fun 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1976  ccnv 5026  Fun wfun 5783  wf 5785  1-1wf1 5786  cfv 5789  (class class class)co 6526  0cc0 9792  cz 11212  ..^cfzo 12291  #chash 12936  Word cword 13094   cyclShift ccsh 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4711  ax-pow 4763  ax-pr 4827  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4938  df-id 4942  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-xp 5033  df-rel 5034  df-cnv 5035  df-co 5036  df-dm 5037  df-rn 5038  df-res 5039  df-ima 5040  df-pred 5582  df-ord 5628  df-on 5629  df-lim 5630  df-suc 5631  df-iota 5753  df-fun 5791  df-fn 5792  df-f 5793  df-f1 5794  df-fo 5795  df-f1o 5796  df-fv 5797  df-riota 6488  df-ov 6529  df-oprab 6530  df-mpt2 6531  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10536  df-nn 10870  df-2 10928  df-n0 11142  df-z 11213  df-uz 11522  df-rp 11667  df-fz 12155  df-fzo 12292  df-fl 12412  df-mod 12488  df-hash 12937  df-word 13102  df-concat 13104  df-substr 13106  df-csh 13334
This theorem is referenced by:  crctcshtrl  41007
  Copyright terms: Public domain W3C validator