![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cshwidx0 | Structured version Visualization version GIF version |
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N of the original word. (Contributed by AV, 15-May-2018.) (Revised by AV, 21-May-2018.) (Revised by AV, 30-Oct-2018.) |
Ref | Expression |
---|---|
cshwidx0 | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hasheq0 13366 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 ↔ 𝑊 = ∅)) | |
2 | elfzo0 12723 | . . . . . . . 8 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊))) | |
3 | elnnne0 11518 | . . . . . . . . . 10 ⊢ ((♯‘𝑊) ∈ ℕ ↔ ((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0)) | |
4 | eqneqall 2943 | . . . . . . . . . . . 12 ⊢ ((♯‘𝑊) = 0 → ((♯‘𝑊) ≠ 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) | |
5 | 4 | com12 32 | . . . . . . . . . . 11 ⊢ ((♯‘𝑊) ≠ 0 → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
6 | 5 | adantl 473 | . . . . . . . . . 10 ⊢ (((♯‘𝑊) ∈ ℕ0 ∧ (♯‘𝑊) ≠ 0) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
7 | 3, 6 | sylbi 207 | . . . . . . . . 9 ⊢ ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
8 | 7 | 3ad2ant2 1129 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝑁 < (♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
9 | 2, 8 | sylbi 207 | . . . . . . 7 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) = 0 → (𝑊 ∈ Word 𝑉 → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
10 | 9 | com13 88 | . . . . . 6 ⊢ (𝑊 ∈ Word 𝑉 → ((♯‘𝑊) = 0 → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
11 | 1, 10 | sylbird 250 | . . . . 5 ⊢ (𝑊 ∈ Word 𝑉 → (𝑊 = ∅ → (𝑁 ∈ (0..^(♯‘𝑊)) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
12 | 11 | com23 86 | . . . 4 ⊢ (𝑊 ∈ Word 𝑉 → (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)))) |
13 | 12 | imp 444 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → (𝑊 = ∅ → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
14 | 13 | com12 32 | . 2 ⊢ (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
15 | simpl 474 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → 𝑊 ∈ Word 𝑉) | |
16 | 15 | adantl 473 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ∈ Word 𝑉) |
17 | simpl 474 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑊 ≠ ∅) | |
18 | elfzoelz 12684 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → 𝑁 ∈ ℤ) | |
19 | 18 | ad2antll 767 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → 𝑁 ∈ ℤ) |
20 | cshwidx0mod 13771 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) | |
21 | 16, 17, 19, 20 | syl3anc 1477 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊)))) |
22 | zmodidfzoimp 12914 | . . . . . 6 ⊢ (𝑁 ∈ (0..^(♯‘𝑊)) → (𝑁 mod (♯‘𝑊)) = 𝑁) | |
23 | 22 | ad2antll 767 | . . . . 5 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑁 mod (♯‘𝑊)) = 𝑁) |
24 | 23 | fveq2d 6357 | . . . 4 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → (𝑊‘(𝑁 mod (♯‘𝑊))) = (𝑊‘𝑁)) |
25 | 21, 24 | eqtrd 2794 | . . 3 ⊢ ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊)))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
26 | 25 | ex 449 | . 2 ⊢ (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁))) |
27 | 14, 26 | pm2.61ine 3015 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 class class class wbr 4804 ‘cfv 6049 (class class class)co 6814 0cc0 10148 < clt 10286 ℕcn 11232 ℕ0cn0 11504 ℤcz 11589 ..^cfzo 12679 mod cmo 12882 ♯chash 13331 Word cword 13497 cyclShift ccsh 13754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-sup 8515 df-inf 8516 df-card 8975 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-rp 12046 df-fz 12540 df-fzo 12680 df-fl 12807 df-mod 12883 df-hash 13332 df-word 13505 df-concat 13507 df-substr 13509 df-csh 13755 |
This theorem is referenced by: clwwisshclwws 27159 |
Copyright terms: Public domain | W3C validator |