MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidx0mod Structured version   Visualization version   GIF version

Theorem cshwidx0mod 13749
Description: The symbol at index 0 of a cyclically shifted nonempty word is the symbol at index N (modulo the length of the word) of the original word. (Contributed by AV, 30-Oct-2018.)
Assertion
Ref Expression
cshwidx0mod ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊))))

Proof of Theorem cshwidx0mod
StepHypRef Expression
1 simp1 1131 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → 𝑊 ∈ Word 𝑉)
2 simp3 1133 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
3 lennncl 13509 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
4 lbfzo0 12700 . . . . 5 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
53, 4sylibr 224 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → 0 ∈ (0..^(♯‘𝑊)))
653adant3 1127 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → 0 ∈ (0..^(♯‘𝑊)))
7 cshwidxmod 13747 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 0 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘((0 + 𝑁) mod (♯‘𝑊))))
81, 2, 6, 7syl3anc 1477 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘((0 + 𝑁) mod (♯‘𝑊))))
9 zcn 11572 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
109addid2d 10427 . . . . 5 (𝑁 ∈ ℤ → (0 + 𝑁) = 𝑁)
11103ad2ant3 1130 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → (0 + 𝑁) = 𝑁)
1211oveq1d 6826 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((0 + 𝑁) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1312fveq2d 6354 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → (𝑊‘((0 + 𝑁) mod (♯‘𝑊))) = (𝑊‘(𝑁 mod (♯‘𝑊))))
148, 13eqtrd 2792 1 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅ ∧ 𝑁 ∈ ℤ) → ((𝑊 cyclShift 𝑁)‘0) = (𝑊‘(𝑁 mod (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1630  wcel 2137  wne 2930  c0 4056  cfv 6047  (class class class)co 6811  0cc0 10126   + caddc 10129  cn 11210  cz 11567  ..^cfzo 12657   mod cmo 12860  chash 13309  Word cword 13475   cyclShift ccsh 13732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-oadd 7731  df-er 7909  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-sup 8511  df-inf 8512  df-card 8953  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-n0 11483  df-z 11568  df-uz 11878  df-rp 12024  df-fz 12518  df-fzo 12658  df-fl 12785  df-mod 12861  df-hash 13310  df-word 13483  df-concat 13485  df-substr 13487  df-csh 13733
This theorem is referenced by:  cshwidx0  13750
  Copyright terms: Public domain W3C validator