MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwidxmodr Structured version   Visualization version   GIF version

Theorem cshwidxmodr 14168
Description: The symbol at a given index of a cyclically shifted nonempty word is the symbol at the shifted index of the original word. (Contributed by AV, 17-Mar-2021.)
Assertion
Ref Expression
cshwidxmodr ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))

Proof of Theorem cshwidxmodr
StepHypRef Expression
1 elfzo0 13081 . . . . . . 7 (𝐼 ∈ (0..^(♯‘𝑊)) ↔ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)))
2 nn0z 12008 . . . . . . . . . . 11 (𝐼 ∈ ℕ0𝐼 ∈ ℤ)
323ad2ant1 1129 . . . . . . . . . 10 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → 𝐼 ∈ ℤ)
4 zsubcl 12027 . . . . . . . . . 10 ((𝐼 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
53, 4sylan 582 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
6 simpl2 1188 . . . . . . . . 9 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℕ)
75, 6jca 514 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
87ex 415 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
91, 8sylbi 219 . . . . . 6 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ)))
109impcom 410 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
11103adant1 1126 . . . 4 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ))
12 zmodfzo 13265 . . . 4 (((𝐼𝑁) ∈ ℤ ∧ (♯‘𝑊) ∈ ℕ) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
1311, 12syl 17 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊)))
14 cshwidxmod 14167 . . 3 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ ((𝐼𝑁) mod (♯‘𝑊)) ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
1513, 14syld3an3 1405 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))))
16 elfzoelz 13041 . . . . . . . . . . . . . . 15 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℤ)
1716adantl 484 . . . . . . . . . . . . . 14 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℤ)
1817, 4sylan 582 . . . . . . . . . . . . 13 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℤ)
1918zred 12090 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼𝑁) ∈ ℝ)
20 zre 11988 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2120adantl 484 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
22 nnrp 12403 . . . . . . . . . . . . 13 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
2322ad3antlr 729 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (♯‘𝑊) ∈ ℝ+)
24 modaddmod 13281 . . . . . . . . . . . 12 (((𝐼𝑁) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
2519, 21, 23, 24syl3anc 1367 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)))
26 nn0cn 11910 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℂ)
2726ad2antrr 724 . . . . . . . . . . . . 13 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ∈ ℂ)
28 zcn 11989 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
29 npcan 10897 . . . . . . . . . . . . 13 ((𝐼 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3027, 28, 29syl2an 597 . . . . . . . . . . . 12 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((𝐼𝑁) + 𝑁) = 𝐼)
3130oveq1d 7173 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (((𝐼𝑁) + 𝑁) mod (♯‘𝑊)) = (𝐼 mod (♯‘𝑊)))
32 zmodidfzoimp 13272 . . . . . . . . . . . 12 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3332ad2antlr 725 . . . . . . . . . . 11 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝐼 mod (♯‘𝑊)) = 𝐼)
3425, 31, 333eqtrd 2862 . . . . . . . . . 10 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → ((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊)) = 𝐼)
3534fveq2d 6676 . . . . . . . . 9 ((((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ 𝑁 ∈ ℤ) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
3635ex 415 . . . . . . . 8 (((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
3736ex 415 . . . . . . 7 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
38373adant3 1128 . . . . . 6 ((𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐼 < (♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
391, 38sylbi 219 . . . . 5 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))))
4039pm2.43i 52 . . . 4 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝑁 ∈ ℤ → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼)))
4140impcom 410 . . 3 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
42413adant1 1126 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊‘((((𝐼𝑁) mod (♯‘𝑊)) + 𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
4315, 42eqtrd 2858 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑁)‘((𝐼𝑁) mod (♯‘𝑊))) = (𝑊𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   < clt 10677  cmin 10872  cn 11640  0cn0 11900  cz 11984  +crp 12392  ..^cfzo 13036   mod cmo 13240  chash 13693  Word cword 13864   cyclShift ccsh 14152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-hash 13694  df-word 13865  df-concat 13925  df-substr 14005  df-pfx 14035  df-csh 14153
This theorem is referenced by:  cshwrnid  30637
  Copyright terms: Public domain W3C validator