MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwlen Structured version   Visualization version   GIF version

Theorem cshwlen 13498
Description: The length of a cyclically shifted word is the same as the length of the original word. (Contributed by AV, 16-May-2018.) (Revised by AV, 20-May-2018.) (Revised by AV, 27-Oct-2018.)
Assertion
Ref Expression
cshwlen ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))

Proof of Theorem cshwlen
StepHypRef Expression
1 oveq1 6622 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
2 0csh0 13492 . . . . . 6 (∅ cyclShift 𝑁) = ∅
32a1i 11 . . . . 5 (𝑊 = ∅ → (∅ cyclShift 𝑁) = ∅)
4 eqcom 2628 . . . . . 6 (𝑊 = ∅ ↔ ∅ = 𝑊)
54biimpi 206 . . . . 5 (𝑊 = ∅ → ∅ = 𝑊)
61, 3, 53eqtrd 2659 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = 𝑊)
76fveq2d 6162 . . 3 (𝑊 = ∅ → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))
87a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊)))
9 cshword 13490 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
109fveq2d 6162 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1110adantr 481 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (#‘(𝑊 cyclShift 𝑁)) = (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
12 swrdcl 13373 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ∈ Word 𝑉)
13 swrdcl 13373 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩) ∈ Word 𝑉)
14 ccatlen 13315 . . . . . . 7 (((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ∈ Word 𝑉 ∧ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩) ∈ Word 𝑉) → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1512, 13, 14syl2anc 692 . . . . . 6 (𝑊 ∈ Word 𝑉 → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1615adantr 481 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
1716adantr 481 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (#‘((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
18 lennncl 13280 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (#‘𝑊) ∈ ℕ)
19 pm3.21 464 . . . . . . . . . . 11 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))
2019ex 450 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2118, 20syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2221ex 450 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (𝑁 ∈ ℤ → (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2322com24 95 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ))))))
2423pm2.43i 52 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑁 ∈ ℤ → (𝑊 ≠ ∅ → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))))
2524imp31 448 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)))
26 simpl 473 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
27 pm3.22 465 . . . . . . . . . 10 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
2827adantl 482 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ))
29 zmodfzp1 12650 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊)))
3028, 29syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊)))
31 lencl 13279 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℕ0)
32 nn0fz0 12394 . . . . . . . . . 10 ((#‘𝑊) ∈ ℕ0 ↔ (#‘𝑊) ∈ (0...(#‘𝑊)))
3331, 32sylib 208 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ (0...(#‘𝑊)))
3433adantr 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (#‘𝑊) ∈ (0...(#‘𝑊)))
35 swrdlen 13377 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊)) ∧ (#‘𝑊) ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) = ((#‘𝑊) − (𝑁 mod (#‘𝑊))))
3626, 30, 34, 35syl3anc 1323 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) = ((#‘𝑊) − (𝑁 mod (#‘𝑊))))
37 zmodcl 12646 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → (𝑁 mod (#‘𝑊)) ∈ ℕ0)
3837ancoms 469 . . . . . . . . . 10 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (#‘𝑊)) ∈ ℕ0)
3938adantl 482 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (#‘𝑊)) ∈ ℕ0)
40 0elfz 12393 . . . . . . . . 9 ((𝑁 mod (#‘𝑊)) ∈ ℕ0 → 0 ∈ (0...(𝑁 mod (#‘𝑊))))
4139, 40syl 17 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → 0 ∈ (0...(𝑁 mod (#‘𝑊))))
42 swrdlen 13377 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0...(𝑁 mod (#‘𝑊))) ∧ (𝑁 mod (#‘𝑊)) ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)) = ((𝑁 mod (#‘𝑊)) − 0))
4326, 41, 30, 42syl3anc 1323 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)) = ((𝑁 mod (#‘𝑊)) − 0))
4436, 43oveq12d 6633 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + ((𝑁 mod (#‘𝑊)) − 0)))
4537nn0cnd 11313 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (#‘𝑊) ∈ ℕ) → (𝑁 mod (#‘𝑊)) ∈ ℂ)
4645ancoms 469 . . . . . . . . 9 (((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑁 mod (#‘𝑊)) ∈ ℂ)
4746adantl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (𝑁 mod (#‘𝑊)) ∈ ℂ)
4847subid1d 10341 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((𝑁 mod (#‘𝑊)) − 0) = (𝑁 mod (#‘𝑊)))
4948oveq2d 6631 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + ((𝑁 mod (#‘𝑊)) − 0)) = (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + (𝑁 mod (#‘𝑊))))
5031nn0cnd 11313 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (#‘𝑊) ∈ ℂ)
51 npcan 10250 . . . . . . 7 (((#‘𝑊) ∈ ℂ ∧ (𝑁 mod (#‘𝑊)) ∈ ℂ) → (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + (𝑁 mod (#‘𝑊))) = (#‘𝑊))
5250, 46, 51syl2an 494 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → (((#‘𝑊) − (𝑁 mod (#‘𝑊))) + (𝑁 mod (#‘𝑊))) = (#‘𝑊))
5344, 49, 523eqtrd 2659 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ((#‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ)) → ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = (#‘𝑊))
5425, 53syl 17 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → ((#‘(𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩)) + (#‘(𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = (#‘𝑊))
5511, 17, 543eqtrd 2659 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) ∧ 𝑊 ≠ ∅) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))
5655expcom 451 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊)))
578, 56pm2.61ine 2873 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (#‘(𝑊 cyclShift 𝑁)) = (#‘𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  c0 3897  cop 4161  cfv 5857  (class class class)co 6615  cc 9894  0cc0 9896   + caddc 9899  cmin 10226  cn 10980  0cn0 11252  cz 11337  ...cfz 12284   mod cmo 12624  #chash 13073  Word cword 13246   ++ cconcat 13248   substr csubstr 13250   cyclShift ccsh 13487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fz 12285  df-fzo 12423  df-fl 12549  df-mod 12625  df-hash 13074  df-word 13254  df-concat 13256  df-substr 13258  df-csh 13488
This theorem is referenced by:  cshwf  13499  2cshw  13512  lswcshw  13514  cshwleneq  13516  crctcshlem2  26613  clwwisshclwwslem  26827  clwwisshclwws  26828  clwwnisshclwwsn  26830  erclwwlkseqlen  26833  erclwwlksneqlen  26845  eucrct2eupth  27005
  Copyright terms: Public domain W3C validator