MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshword Structured version   Visualization version   GIF version

Theorem cshword 13490
Description: Perform a cyclical shift for a word. (Contributed by Alexander van der Vekens, 20-May-2018.) (Revised by AV, 17-Nov-2018.)
Assertion
Ref Expression
cshword ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))

Proof of Theorem cshword
Dummy variables 𝑙 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswrd 13262 . . . . 5 (𝑊 ∈ Word 𝑉 ↔ ∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑉)
2 ffn 6012 . . . . . 6 (𝑊:(0..^𝑙)⟶𝑉𝑊 Fn (0..^𝑙))
32reximi 3007 . . . . 5 (∃𝑙 ∈ ℕ0 𝑊:(0..^𝑙)⟶𝑉 → ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙))
41, 3sylbi 207 . . . 4 (𝑊 ∈ Word 𝑉 → ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙))
5 fneq1 5947 . . . . . 6 (𝑤 = 𝑊 → (𝑤 Fn (0..^𝑙) ↔ 𝑊 Fn (0..^𝑙)))
65rexbidv 3047 . . . . 5 (𝑤 = 𝑊 → (∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙) ↔ ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙)))
76elabg 3339 . . . 4 (𝑊 ∈ Word 𝑉 → (𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)} ↔ ∃𝑙 ∈ ℕ0 𝑊 Fn (0..^𝑙)))
84, 7mpbird 247 . . 3 (𝑊 ∈ Word 𝑉𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)})
9 cshfn 13489 . . 3 ((𝑊 ∈ {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤 Fn (0..^𝑙)} ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
108, 9sylan 488 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))))
11 iftrue 4070 . . . . 5 (𝑊 = ∅ → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ∅)
1211adantr 481 . . . 4 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ∅)
13 oveq1 6622 . . . . . . . 8 (𝑊 = ∅ → (𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) = (∅ substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩))
14 swrd0 13388 . . . . . . . 8 (∅ substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) = ∅
1513, 14syl6eq 2671 . . . . . . 7 (𝑊 = ∅ → (𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) = ∅)
16 oveq1 6622 . . . . . . . 8 (𝑊 = ∅ → (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩) = (∅ substr ⟨0, (𝑁 mod (#‘𝑊))⟩))
17 swrd0 13388 . . . . . . . 8 (∅ substr ⟨0, (𝑁 mod (#‘𝑊))⟩) = ∅
1816, 17syl6eq 2671 . . . . . . 7 (𝑊 = ∅ → (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩) = ∅)
1915, 18oveq12d 6633 . . . . . 6 (𝑊 = ∅ → ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)) = (∅ ++ ∅))
2019adantr 481 . . . . 5 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)) = (∅ ++ ∅))
21 wrd0 13285 . . . . . 6 ∅ ∈ Word 𝑉
22 ccatrid 13325 . . . . . 6 (∅ ∈ Word 𝑉 → (∅ ++ ∅) = ∅)
2321, 22ax-mp 5 . . . . 5 (∅ ++ ∅) = ∅
2420, 23syl6req 2672 . . . 4 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ∅ = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
2512, 24eqtrd 2655 . . 3 ((𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
26 iffalse 4073 . . . 4 𝑊 = ∅ → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
2726adantr 481 . . 3 ((¬ 𝑊 = ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
2825, 27pm2.61ian 830 . 2 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → if(𝑊 = ∅, ∅, ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩))) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
2910, 28eqtrd 2655 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (#‘𝑊)), (#‘𝑊)⟩) ++ (𝑊 substr ⟨0, (𝑁 mod (#‘𝑊))⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1480  wcel 1987  {cab 2607  wrex 2909  c0 3897  ifcif 4064  cop 4161   Fn wfn 5852  wf 5853  cfv 5857  (class class class)co 6615  0cc0 9896  0cn0 11252  cz 11337  ..^cfzo 12422   mod cmo 12624  #chash 13073  Word cword 13246   ++ cconcat 13248   substr csubstr 13250   cyclShift ccsh 13487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-card 8725  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-fzo 12423  df-hash 13074  df-word 13254  df-concat 13256  df-substr 13258  df-csh 13488
This theorem is referenced by:  cshw0  13493  cshwmodn  13494  cshwcl  13497  cshwlen  13498  cshwidxmod  13502  repswcshw  13511
  Copyright terms: Public domain W3C validator