MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwshashlem2 Structured version   Visualization version   GIF version

Theorem cshwshashlem2 16001
Description: If cyclically shifting a word of length being a prime number and not of identical symbols by different numbers of positions, the resulting words are different. (Contributed by Alexander van der Vekens, 19-May-2018.) (Revised by Alexander van der Vekens, 8-Jun-2018.)
Hypothesis
Ref Expression
cshwshash.0 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
Assertion
Ref Expression
cshwshashlem2 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Distinct variable groups:   𝑖,𝐿   𝑖,𝑉   𝑖,𝑊   𝜑,𝑖   𝑖,𝐾

Proof of Theorem cshwshashlem2
StepHypRef Expression
1 oveq1 6816 . . . . . . . 8 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)))
21eqcomd 2762 . . . . . . 7 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)))
32ad2antrr 764 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)))
4 cshwshash.0 . . . . . . . . . . 11 (𝜑 → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) ∈ ℙ))
54simpld 477 . . . . . . . . . 10 (𝜑𝑊 ∈ Word 𝑉)
65adantr 472 . . . . . . . . 9 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → 𝑊 ∈ Word 𝑉)
76adantl 473 . . . . . . . 8 (((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) → 𝑊 ∈ Word 𝑉)
87adantr 472 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝑊 ∈ Word 𝑉)
9 elfzofz 12675 . . . . . . . . 9 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ (0...(♯‘𝑊)))
1093ad2ant2 1129 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 𝐾 ∈ (0...(♯‘𝑊)))
1110adantl 473 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝐾 ∈ (0...(♯‘𝑊)))
12 elfzofz 12675 . . . . . . . . . 10 (𝐿 ∈ (0..^(♯‘𝑊)) → 𝐿 ∈ (0...(♯‘𝑊)))
13 fznn0sub2 12636 . . . . . . . . . 10 (𝐿 ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
1412, 13syl 17 . . . . . . . . 9 (𝐿 ∈ (0..^(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
15143ad2ant1 1128 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
1615adantl 473 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)))
17 elfzo0 12699 . . . . . . . . . . . 12 (𝐿 ∈ (0..^(♯‘𝑊)) ↔ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)))
18 zre 11569 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1918adantr 472 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → 𝐾 ∈ ℝ)
20 nnre 11215 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ)
21 nn0re 11489 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
22 resubcl 10533 . . . . . . . . . . . . . . . . . . 19 (((♯‘𝑊) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2320, 21, 22syl2anr 496 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2423adantl 473 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
2519, 24readdcld 10257 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ)
2620adantl 473 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (♯‘𝑊) ∈ ℝ)
2726adantl 473 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (♯‘𝑊) ∈ ℝ)
2825, 27jca 555 . . . . . . . . . . . . . . 15 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
2928ex 449 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
30 elfzoelz 12660 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝑊)) → 𝐾 ∈ ℤ)
3129, 30syl11 33 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
32313adant3 1127 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
3317, 32sylbi 207 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ)))
3433imp 444 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
35343adant3 1127 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ))
36 fzonmapblen 12704 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊))
37 ltle 10314 . . . . . . . . 9 (((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → ((𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)))
3835, 36, 37sylc 65 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))
3938adantl 473 . . . . . . 7 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))
40 simpl 474 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → 𝑊 ∈ Word 𝑉)
41 elfzelz 12531 . . . . . . . . . 10 (𝐾 ∈ (0...(♯‘𝑊)) → 𝐾 ∈ ℤ)
42413ad2ant1 1128 . . . . . . . . 9 ((𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)) → 𝐾 ∈ ℤ)
4342adantl 473 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → 𝐾 ∈ ℤ)
44 elfzelz 12531 . . . . . . . . . 10 (((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
45443ad2ant2 1129 . . . . . . . . 9 ((𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
4645adantl 473 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
47 2cshw 13755 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
4840, 43, 46, 47syl3anc 1477 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (𝐾 ∈ (0...(♯‘𝑊)) ∧ ((♯‘𝑊) − 𝐿) ∈ (0...(♯‘𝑊)) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ≤ (♯‘𝑊))) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
498, 11, 16, 39, 48syl13anc 1479 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐾) cyclShift ((♯‘𝑊) − 𝐿)) = (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))))
50123ad2ant1 1128 . . . . . . 7 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 𝐿 ∈ (0...(♯‘𝑊)))
51 elfzelz 12531 . . . . . . . 8 (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ)
52 2cshwid 13756 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐿 ∈ ℤ) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
5351, 52sylan2 492 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝑊))) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
547, 50, 53syl2an 495 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ((𝑊 cyclShift 𝐿) cyclShift ((♯‘𝑊) − 𝐿)) = 𝑊)
553, 49, 543eqtr3d 2798 . . . . 5 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) = 𝑊)
56 simplrl 819 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → 𝜑)
57 simplrr 820 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))
58 3simpa 1143 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ))
5917, 58sylbi 207 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ))
60 nnz 11587 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℤ)
61 nn0z 11588 . . . . . . . . . . . . . . 15 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
62 zsubcl 11607 . . . . . . . . . . . . . . 15 (((♯‘𝑊) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
6360, 61, 62syl2anr 496 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → ((♯‘𝑊) − 𝐿) ∈ ℤ)
6463anim2i 594 . . . . . . . . . . . . 13 ((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ)) → (𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ))
6564ancoms 468 . . . . . . . . . . . 12 (((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ))
66 zaddcl 11605 . . . . . . . . . . . 12 ((𝐾 ∈ ℤ ∧ ((♯‘𝑊) − 𝐿) ∈ ℤ) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
6765, 66syl 17 . . . . . . . . . . 11 (((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) ∧ 𝐾 ∈ ℤ) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
6859, 30, 67syl2an 495 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
69683adant3 1127 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ)
70 elfzo0 12699 . . . . . . . . . . . . . 14 (𝐾 ∈ (0..^(♯‘𝑊)) ↔ (𝐾 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐾 < (♯‘𝑊)))
71 elnn0z 11578 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℤ ∧ 0 ≤ 𝐾))
7218ad2antrr 764 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 𝐾 ∈ ℝ)
73233adant3 1127 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
7473adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → ((♯‘𝑊) − 𝐿) ∈ ℝ)
75 simplr 809 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 ≤ 𝐾)
76 posdif 10709 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ) → (𝐿 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 𝐿)))
7721, 20, 76syl2an 495 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ) → (𝐿 < (♯‘𝑊) ↔ 0 < ((♯‘𝑊) − 𝐿)))
7877biimp3a 1577 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < ((♯‘𝑊) − 𝐿))
7978adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 < ((♯‘𝑊) − 𝐿))
8072, 74, 75, 79addgegt0d 10789 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) ∧ (𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊))) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
8180ex 449 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ ℤ ∧ 0 ≤ 𝐾) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8271, 81sylbi 207 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
83823ad2ant1 1128 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐾 < (♯‘𝑊)) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8470, 83sylbi 207 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^(♯‘𝑊)) → ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8584com12 32 . . . . . . . . . . . 12 ((𝐿 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ ∧ 𝐿 < (♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8617, 85sylbi 207 . . . . . . . . . . 11 (𝐿 ∈ (0..^(♯‘𝑊)) → (𝐾 ∈ (0..^(♯‘𝑊)) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
8786imp 444 . . . . . . . . . 10 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊))) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
88873adant3 1127 . . . . . . . . 9 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → 0 < (𝐾 + ((♯‘𝑊) − 𝐿)))
89 elnnz 11575 . . . . . . . . 9 ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ ↔ ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℤ ∧ 0 < (𝐾 + ((♯‘𝑊) − 𝐿))))
9069, 88, 89sylanbrc 701 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ)
9117simp2bi 1141 . . . . . . . . 9 (𝐿 ∈ (0..^(♯‘𝑊)) → (♯‘𝑊) ∈ ℕ)
92913ad2ant1 1128 . . . . . . . 8 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (♯‘𝑊) ∈ ℕ)
93 elfzo1 12708 . . . . . . . 8 ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)) ↔ ((𝐾 + ((♯‘𝑊) − 𝐿)) ∈ ℕ ∧ (♯‘𝑊) ∈ ℕ ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) < (♯‘𝑊)))
9490, 92, 36, 93syl3anbrc 1429 . . . . . . 7 ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)))
9594adantl 473 . . . . . 6 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊)))
964cshwshashlem1 16000 . . . . . 6 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0) ∧ (𝐾 + ((♯‘𝑊) − 𝐿)) ∈ (1..^(♯‘𝑊))) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) ≠ 𝑊)
9756, 57, 95, 96syl3anc 1477 . . . . 5 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift (𝐾 + ((♯‘𝑊) − 𝐿))) ≠ 𝑊)
9855, 97pm2.21ddne 3012 . . . 4 ((((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) ∧ (𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿)) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))
9998ex 449 . . 3 (((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) ∧ (𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0))) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
10099ex 449 . 2 ((𝑊 cyclShift 𝐿) = (𝑊 cyclShift 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
101 2a1 28 . 2 ((𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾) → ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾))))
102100, 101pm2.61ine 3011 1 ((𝜑 ∧ ∃𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) ≠ (𝑊‘0)) → ((𝐿 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 ∈ (0..^(♯‘𝑊)) ∧ 𝐾 < 𝐿) → (𝑊 cyclShift 𝐿) ≠ (𝑊 cyclShift 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1628  wcel 2135  wne 2928  wrex 3047   class class class wbr 4800  cfv 6045  (class class class)co 6809  cr 10123  0cc0 10124  1c1 10125   + caddc 10127   < clt 10262  cle 10263  cmin 10454  cn 11208  0cn0 11480  cz 11565  ...cfz 12515  ..^cfzo 12655  chash 13307  Word cword 13473   cyclShift ccsh 13730  cprime 15583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-rep 4919  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-1st 7329  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-1o 7725  df-2o 7726  df-oadd 7729  df-er 7907  df-map 8021  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-sup 8509  df-inf 8510  df-card 8951  df-cda 9178  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-3 11268  df-n0 11481  df-xnn0 11552  df-z 11566  df-uz 11876  df-rp 12022  df-fz 12516  df-fzo 12656  df-fl 12783  df-mod 12859  df-seq 12992  df-exp 13051  df-hash 13308  df-word 13481  df-concat 13483  df-substr 13485  df-reps 13488  df-csh 13731  df-cj 14034  df-re 14035  df-im 14036  df-sqrt 14170  df-abs 14171  df-dvds 15179  df-gcd 15415  df-prm 15584  df-phi 15669
This theorem is referenced by:  cshwshashlem3  16002
  Copyright terms: Public domain W3C validator