Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curf Structured version   Visualization version   GIF version

Theorem curf 34864
Description: Functional property of currying. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
curf ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))

Proof of Theorem curf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 5586 . . . . . . . 8 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
2 ffvelrn 6843 . . . . . . . 8 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
31, 2sylan2 594 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶 ∧ (𝑥𝐴𝑦𝐵)) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
43anassrs 470 . . . . . 6 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) ∧ 𝑦𝐵) → (𝐹‘⟨𝑥, 𝑦⟩) ∈ 𝐶)
54fmpttd 6873 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶)
653ad2antl1 1181 . . . 4 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶)
7 elmapg 8413 . . . . . . 7 ((𝐶𝑊𝐵 ∈ (𝑉 ∖ {∅})) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
87ancoms 461 . . . . . 6 ((𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
983adant1 1126 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
109adantr 483 . . . 4 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → ((𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵) ↔ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)):𝐵𝐶))
116, 10mpbird 259 . . 3 (((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) ∧ 𝑥𝐴) → (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) ∈ (𝐶m 𝐵))
1211fmpttd 6873 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵))
13 eldifsni 4715 . . . 4 (𝐵 ∈ (𝑉 ∖ {∅}) → 𝐵 ≠ ∅)
14 df-cur 7927 . . . . . 6 curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
15 fdm 6516 . . . . . . . . . 10 (𝐹:(𝐴 × 𝐵)⟶𝐶 → dom 𝐹 = (𝐴 × 𝐵))
1615dmeqd 5768 . . . . . . . . 9 (𝐹:(𝐴 × 𝐵)⟶𝐶 → dom dom 𝐹 = dom (𝐴 × 𝐵))
17 dmxp 5793 . . . . . . . . 9 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
1816, 17sylan9eq 2876 . . . . . . . 8 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → dom dom 𝐹 = 𝐴)
1918mpteq1d 5147 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}))
20 ffun 6511 . . . . . . . . . . . . . 14 (𝐹:(𝐴 × 𝐵)⟶𝐶 → Fun 𝐹)
21 funbrfv2b 6717 . . . . . . . . . . . . . 14 (Fun 𝐹 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2220, 21syl 17 . . . . . . . . . . . . 13 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦𝐹𝑧 ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2315eleq2d 2898 . . . . . . . . . . . . . . 15 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
24 opelxp 5585 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
2523, 24syl6bb 289 . . . . . . . . . . . . . 14 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ (𝑥𝐴𝑦𝐵)))
2625anbi1d 631 . . . . . . . . . . . . 13 (𝐹:(𝐴 × 𝐵)⟶𝐶 → ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
2722, 26bitrd 281 . . . . . . . . . . . 12 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (⟨𝑥, 𝑦𝐹𝑧 ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)))
28 ibar 531 . . . . . . . . . . . . 13 (𝑥𝐴 → ((𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)))))
29 anass 471 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ (𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
30 eqcom 2828 . . . . . . . . . . . . . . 15 (𝑧 = (𝐹‘⟨𝑥, 𝑦⟩) ↔ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧)
3130anbi2i 624 . . . . . . . . . . . . . 14 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = (𝐹‘⟨𝑥, 𝑦⟩)) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
3229, 31bitr3i 279 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))) ↔ ((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧))
3328, 32syl6rbb 290 . . . . . . . . . . . 12 (𝑥𝐴 → (((𝑥𝐴𝑦𝐵) ∧ (𝐹‘⟨𝑥, 𝑦⟩) = 𝑧) ↔ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
3427, 33sylan9bb 512 . . . . . . . . . . 11 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → (⟨𝑥, 𝑦𝐹𝑧 ↔ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))))
3534opabbidv 5124 . . . . . . . . . 10 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))})
36 df-mpt 5139 . . . . . . . . . 10 (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)) = {⟨𝑦, 𝑧⟩ ∣ (𝑦𝐵𝑧 = (𝐹‘⟨𝑥, 𝑦⟩))}
3735, 36syl6eqr 2874 . . . . . . . . 9 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝑥𝐴) → {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧} = (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩)))
3837mpteq2dva 5153 . . . . . . . 8 (𝐹:(𝐴 × 𝐵)⟶𝐶 → (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
3938adantr 483 . . . . . . 7 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥𝐴 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4019, 39eqtrd 2856 . . . . . 6 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧}) = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4114, 40syl5eq 2868 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → curry 𝐹 = (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))))
4241feq1d 6493 . . . 4 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ≠ ∅) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
4313, 42sylan2 594 . . 3 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅})) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
44433adant3 1128 . 2 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → (curry 𝐹:𝐴⟶(𝐶m 𝐵) ↔ (𝑥𝐴 ↦ (𝑦𝐵 ↦ (𝐹‘⟨𝑥, 𝑦⟩))):𝐴⟶(𝐶m 𝐵)))
4512, 44mpbird 259 1 ((𝐹:(𝐴 × 𝐵)⟶𝐶𝐵 ∈ (𝑉 ∖ {∅}) ∧ 𝐶𝑊) → curry 𝐹:𝐴⟶(𝐶m 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cdif 3932  c0 4290  {csn 4560  cop 4566   class class class wbr 5058  {copab 5120  cmpt 5138   × cxp 5547  dom cdm 5549  Fun wfun 6343  wf 6345  cfv 6349  (class class class)co 7150  curry ccur 7925  m cmap 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-cur 7927  df-map 8402
This theorem is referenced by:  unccur  34869  matunitlindflem1  34882  matunitlindflem2  34883
  Copyright terms: Public domain W3C validator