MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf1cl Structured version   Visualization version   GIF version

Theorem curf1cl 17472
Description: The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
curfval.g 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
curfval.a 𝐴 = (Base‘𝐶)
curfval.c (𝜑𝐶 ∈ Cat)
curfval.d (𝜑𝐷 ∈ Cat)
curfval.f (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
curfval.b 𝐵 = (Base‘𝐷)
curf1.x (𝜑𝑋𝐴)
curf1.k 𝐾 = ((1st𝐺)‘𝑋)
Assertion
Ref Expression
curf1cl (𝜑𝐾 ∈ (𝐷 Func 𝐸))

Proof of Theorem curf1cl
Dummy variables 𝑔 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfval.g . . . 4 𝐺 = (⟨𝐶, 𝐷⟩ curryF 𝐹)
2 curfval.a . . . 4 𝐴 = (Base‘𝐶)
3 curfval.c . . . 4 (𝜑𝐶 ∈ Cat)
4 curfval.d . . . 4 (𝜑𝐷 ∈ Cat)
5 curfval.f . . . 4 (𝜑𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
6 curfval.b . . . 4 𝐵 = (Base‘𝐷)
7 curf1.x . . . 4 (𝜑𝑋𝐴)
8 curf1.k . . . 4 𝐾 = ((1st𝐺)‘𝑋)
9 eqid 2821 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
10 eqid 2821 . . . 4 (Id‘𝐶) = (Id‘𝐶)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10curf1 17469 . . 3 (𝜑𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
126fvexi 6678 . . . . . . 7 𝐵 ∈ V
1312mptex 6980 . . . . . 6 (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)) ∈ V
1412, 12mpoex 7771 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) ∈ V
1513, 14op1std 7693 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1611, 15syl 17 . . . 4 (𝜑 → (1st𝐾) = (𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)))
1713, 14op2ndd 7694 . . . . 5 (𝐾 = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩ → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1811, 17syl 17 . . . 4 (𝜑 → (2nd𝐾) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))))
1916, 18opeq12d 4804 . . 3 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ = ⟨(𝑦𝐵 ↦ (𝑋(1st𝐹)𝑦)), (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))⟩)
2011, 19eqtr4d 2859 . 2 (𝜑𝐾 = ⟨(1st𝐾), (2nd𝐾)⟩)
21 eqid 2821 . . . 4 (Base‘𝐸) = (Base‘𝐸)
22 eqid 2821 . . . 4 (Hom ‘𝐸) = (Hom ‘𝐸)
23 eqid 2821 . . . 4 (Id‘𝐷) = (Id‘𝐷)
24 eqid 2821 . . . 4 (Id‘𝐸) = (Id‘𝐸)
25 eqid 2821 . . . 4 (comp‘𝐷) = (comp‘𝐷)
26 eqid 2821 . . . 4 (comp‘𝐸) = (comp‘𝐸)
27 funcrcl 17127 . . . . . 6 (𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸) → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
285, 27syl 17 . . . . 5 (𝜑 → ((𝐶 ×c 𝐷) ∈ Cat ∧ 𝐸 ∈ Cat))
2928simprd 498 . . . 4 (𝜑𝐸 ∈ Cat)
30 eqid 2821 . . . . . . . . 9 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3130, 2, 6xpcbas 17422 . . . . . . . 8 (𝐴 × 𝐵) = (Base‘(𝐶 ×c 𝐷))
32 relfunc 17126 . . . . . . . . 9 Rel ((𝐶 ×c 𝐷) Func 𝐸)
33 1st2ndbr 7735 . . . . . . . . 9 ((Rel ((𝐶 ×c 𝐷) Func 𝐸) ∧ 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3432, 5, 33sylancr 589 . . . . . . . 8 (𝜑 → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
3531, 21, 34funcf1 17130 . . . . . . 7 (𝜑 → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
3635adantr 483 . . . . . 6 ((𝜑𝑦𝐵) → (1st𝐹):(𝐴 × 𝐵)⟶(Base‘𝐸))
377adantr 483 . . . . . 6 ((𝜑𝑦𝐵) → 𝑋𝐴)
38 simpr 487 . . . . . 6 ((𝜑𝑦𝐵) → 𝑦𝐵)
3936, 37, 38fovrnd 7314 . . . . 5 ((𝜑𝑦𝐵) → (𝑋(1st𝐹)𝑦) ∈ (Base‘𝐸))
4016, 39fmpt3d 6874 . . . 4 (𝜑 → (1st𝐾):𝐵⟶(Base‘𝐸))
41 eqid 2821 . . . . . 6 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) = (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
42 ovex 7183 . . . . . . 7 (𝑦(Hom ‘𝐷)𝑧) ∈ V
4342mptex 6980 . . . . . 6 (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V
4441, 43fnmpoi 7762 . . . . 5 (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)
4518fneq1d 6440 . . . . 5 (𝜑 → ((2nd𝐾) Fn (𝐵 × 𝐵) ↔ (𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))) Fn (𝐵 × 𝐵)))
4644, 45mpbiri 260 . . . 4 (𝜑 → (2nd𝐾) Fn (𝐵 × 𝐵))
4718oveqd 7167 . . . . . 6 (𝜑 → (𝑦(2nd𝐾)𝑧) = (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧))
4841ovmpt4g 7291 . . . . . . 7 ((𝑦𝐵𝑧𝐵 ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)) ∈ V) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
4943, 48mp3an3 1446 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦(𝑦𝐵, 𝑧𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
5047, 49sylan9eq 2876 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔)))
51 eqid 2821 . . . . . . . 8 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
5234ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
537ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑋𝐴)
54 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦𝐵)
5553, 54opelxpd 5587 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
56 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧𝐵)
5753, 56opelxpd 5587 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
5831, 51, 22, 52, 55, 57funcf2 17132 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)))
59 eqid 2821 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
6030, 31, 59, 9, 51, 55, 57xpchom 17424 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = (((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩))))
613ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
624ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
635ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
641, 2, 61, 62, 63, 6, 53, 8, 54curf11 17470 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
65 df-ov 7153 . . . . . . . . . 10 (𝑋(1st𝐹)𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩)
6664, 65syl6req 2873 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑦⟩) = ((1st𝐾)‘𝑦))
671, 2, 61, 62, 63, 6, 53, 8, 56curf11 17470 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
68 df-ov 7153 . . . . . . . . . 10 (𝑋(1st𝐹)𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩)
6967, 68syl6req 2873 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st𝐹)‘⟨𝑋, 𝑧⟩) = ((1st𝐾)‘𝑧))
7066, 69oveq12d 7168 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) = (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
7160, 70feq23d 6503 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩)⟶(((1st𝐹)‘⟨𝑋, 𝑦⟩)(Hom ‘𝐸)((1st𝐹)‘⟨𝑋, 𝑧⟩)) ↔ (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧))))
7258, 71mpbid 234 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩):(((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) × ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
732, 59, 10, 61, 53catidcl 16947 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
74 op1stg 7695 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
7553, 54, 74syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑦⟩) = 𝑋)
76 op1stg 7695 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7753, 56, 76syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (1st ‘⟨𝑋, 𝑧⟩) = 𝑋)
7875, 77oveq12d 7168 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)) = (𝑋(Hom ‘𝐶)𝑋))
7973, 78eleqtrrd 2916 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑋) ∈ ((1st ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐶)(1st ‘⟨𝑋, 𝑧⟩)))
80 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
81 op2ndg 7696 . . . . . . . . 9 ((𝑋𝐴𝑦𝐵) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
8253, 54, 81syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑦⟩) = 𝑦)
83 op2ndg 7696 . . . . . . . . 9 ((𝑋𝐴𝑧𝐵) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8453, 56, 83syl2anc 586 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (2nd ‘⟨𝑋, 𝑧⟩) = 𝑧)
8582, 84oveq12d 7168 . . . . . . 7 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)) = (𝑦(Hom ‘𝐷)𝑧))
8680, 85eleqtrrd 2916 . . . . . 6 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑔 ∈ ((2nd ‘⟨𝑋, 𝑦⟩)(Hom ‘𝐷)(2nd ‘⟨𝑋, 𝑧⟩)))
8772, 79, 86fovrnd 7314 . . . . 5 (((𝜑 ∧ (𝑦𝐵𝑧𝐵)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) ∈ (((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
8850, 87fmpt3d 6874 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(2nd𝐾)𝑧):(𝑦(Hom ‘𝐷)𝑧)⟶(((1st𝐾)‘𝑦)(Hom ‘𝐸)((1st𝐾)‘𝑧)))
893adantr 483 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐶 ∈ Cat)
904adantr 483 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐷 ∈ Cat)
91 eqid 2821 . . . . . . . . 9 (Id‘(𝐶 ×c 𝐷)) = (Id‘(𝐶 ×c 𝐷))
9230, 89, 90, 2, 6, 10, 23, 91, 37, 38xpcid 17433 . . . . . . . 8 ((𝜑𝑦𝐵) → ((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩) = ⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9392fveq2d 6668 . . . . . . 7 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩))
94 df-ov 7153 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘⟨((Id‘𝐶)‘𝑋), ((Id‘𝐷)‘𝑦)⟩)
9593, 94syl6eqr 2874 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
9634adantr 483 . . . . . . 7 ((𝜑𝑦𝐵) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
97 opelxpi 5586 . . . . . . . 8 ((𝑋𝐴𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
987, 97sylan 582 . . . . . . 7 ((𝜑𝑦𝐵) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
9931, 91, 24, 96, 98funcid 17134 . . . . . 6 ((𝜑𝑦𝐵) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)‘((Id‘(𝐶 ×c 𝐷))‘⟨𝑋, 𝑦⟩)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
10095, 99eqtr3d 2858 . . . . 5 ((𝜑𝑦𝐵) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
1015adantr 483 . . . . . 6 ((𝜑𝑦𝐵) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1026, 9, 23, 90, 38catidcl 16947 . . . . . 6 ((𝜑𝑦𝐵) → ((Id‘𝐷)‘𝑦) ∈ (𝑦(Hom ‘𝐷)𝑦))
1031, 2, 89, 90, 101, 6, 37, 8, 38, 9, 10, 38, 102curf12 17471 . . . . 5 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑦⟩)((Id‘𝐷)‘𝑦)))
1041, 2, 89, 90, 101, 6, 37, 8, 38curf11 17470 . . . . . . 7 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
105104, 65syl6eq 2872 . . . . . 6 ((𝜑𝑦𝐵) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
106105fveq2d 6668 . . . . 5 ((𝜑𝑦𝐵) → ((Id‘𝐸)‘((1st𝐾)‘𝑦)) = ((Id‘𝐸)‘((1st𝐹)‘⟨𝑋, 𝑦⟩)))
107100, 103, 1063eqtr4d 2866 . . . 4 ((𝜑𝑦𝐵) → ((𝑦(2nd𝐾)𝑦)‘((Id‘𝐷)‘𝑦)) = ((Id‘𝐸)‘((1st𝐾)‘𝑦)))
10873ad2ant1 1129 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑋𝐴)
109 simp21 1202 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑦𝐵)
110 simp22 1203 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑧𝐵)
111 eqid 2821 . . . . . . . . . 10 (comp‘𝐶) = (comp‘𝐶)
112 eqid 2821 . . . . . . . . . 10 (comp‘(𝐶 ×c 𝐷)) = (comp‘(𝐶 ×c 𝐷))
113 simp23 1204 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑤𝐵)
11433ad2ant1 1129 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐶 ∈ Cat)
1152, 59, 10, 114, 108catidcl 16947 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((Id‘𝐶)‘𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
116 simp3l 1197 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧))
117 simp3r 1198 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ∈ (𝑧(Hom ‘𝐷)𝑤))
11830, 2, 6, 59, 9, 108, 109, 108, 110, 111, 25, 112, 108, 113, 115, 116, 115, 117xpcco2 17431 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
1192, 59, 10, 114, 108, 111, 108, 115catlid 16948 . . . . . . . . . 10 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)) = ((Id‘𝐶)‘𝑋))
120119opeq1d 4802 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨(((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑋⟩(comp‘𝐶)𝑋)((Id‘𝐶)‘𝑋)), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩ = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
121118, 120eqtrd 2856 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩) = ⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
122121fveq2d 6668 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩))
123 df-ov 7153 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)⟩)
124122, 123syl6eqr 2874 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
125343ad2ant1 1129 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (1st𝐹)((𝐶 ×c 𝐷) Func 𝐸)(2nd𝐹))
126108, 109opelxpd 5587 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑦⟩ ∈ (𝐴 × 𝐵))
127108, 110opelxpd 5587 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑧⟩ ∈ (𝐴 × 𝐵))
128108, 113opelxpd 5587 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨𝑋, 𝑤⟩ ∈ (𝐴 × 𝐵))
129115, 116opelxpd 5587 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
13030, 2, 6, 59, 9, 108, 109, 108, 110, 51xpchom2 17430 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑦(Hom ‘𝐷)𝑧)))
131129, 130eleqtrrd 2916 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), 𝑔⟩ ∈ (⟨𝑋, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑧⟩))
132115, 117opelxpd 5587 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
13330, 2, 6, 59, 9, 108, 110, 108, 113, 51xpchom2 17430 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩) = ((𝑋(Hom ‘𝐶)𝑋) × (𝑧(Hom ‘𝐷)𝑤)))
134132, 133eleqtrrd 2916 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((Id‘𝐶)‘𝑋), ⟩ ∈ (⟨𝑋, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩))
13531, 51, 112, 26, 125, 126, 127, 128, 131, 134funcco 17135 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘(⟨((Id‘𝐶)‘𝑋), ⟩(⟨⟨𝑋, 𝑦⟩, ⟨𝑋, 𝑧⟩⟩(comp‘(𝐶 ×c 𝐷))⟨𝑋, 𝑤⟩)⟨((Id‘𝐶)‘𝑋), 𝑔⟩)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
136124, 135eqtr3d 2858 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
13743ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐷 ∈ Cat)
13853ad2ant1 1129 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸))
1396, 9, 25, 137, 109, 110, 113, 116, 117catcocl 16950 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐷)𝑤))
1401, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 113, 139curf12 17471 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑤⟩)((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)))
1411, 2, 114, 137, 138, 6, 108, 8, 109curf11 17470 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = (𝑋(1st𝐹)𝑦))
142141, 65syl6eq 2872 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑦) = ((1st𝐹)‘⟨𝑋, 𝑦⟩))
1431, 2, 114, 137, 138, 6, 108, 8, 110curf11 17470 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = (𝑋(1st𝐹)𝑧))
144143, 68syl6eq 2872 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑧) = ((1st𝐹)‘⟨𝑋, 𝑧⟩))
145142, 144opeq12d 4804 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩ = ⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩)
1461, 2, 114, 137, 138, 6, 108, 8, 113curf11 17470 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = (𝑋(1st𝐹)𝑤))
147 df-ov 7153 . . . . . . . 8 (𝑋(1st𝐹)𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩)
148146, 147syl6eq 2872 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((1st𝐾)‘𝑤) = ((1st𝐹)‘⟨𝑋, 𝑤⟩))
149145, 148oveq12d 7168 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤)) = (⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩)))
1501, 2, 114, 137, 138, 6, 108, 8, 110, 9, 10, 113, 117curf12 17471 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)))
151 df-ov 7153 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)
152150, 151syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑧(2nd𝐾)𝑤)‘) = ((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩))
1531, 2, 114, 137, 138, 6, 108, 8, 109, 9, 10, 110, 116curf12 17471 . . . . . . 7 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔))
154 df-ov 7153 . . . . . . 7 (((Id‘𝐶)‘𝑋)(⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)
155153, 154syl6eq 2872 . . . . . 6 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑧)‘𝑔) = ((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩))
156149, 152, 155oveq123d 7171 . . . . 5 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)) = (((⟨𝑋, 𝑧⟩(2nd𝐹)⟨𝑋, 𝑤⟩)‘⟨((Id‘𝐶)‘𝑋), ⟩)(⟨((1st𝐹)‘⟨𝑋, 𝑦⟩), ((1st𝐹)‘⟨𝑋, 𝑧⟩)⟩(comp‘𝐸)((1st𝐹)‘⟨𝑋, 𝑤⟩))((⟨𝑋, 𝑦⟩(2nd𝐹)⟨𝑋, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑋), 𝑔⟩)))
157136, 140, 1563eqtr4d 2866 . . . 4 ((𝜑 ∧ (𝑦𝐵𝑧𝐵𝑤𝐵) ∧ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ∧ ∈ (𝑧(Hom ‘𝐷)𝑤))) → ((𝑦(2nd𝐾)𝑤)‘((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)) = (((𝑧(2nd𝐾)𝑤)‘)(⟨((1st𝐾)‘𝑦), ((1st𝐾)‘𝑧)⟩(comp‘𝐸)((1st𝐾)‘𝑤))((𝑦(2nd𝐾)𝑧)‘𝑔)))
1586, 21, 9, 22, 23, 24, 25, 26, 4, 29, 40, 46, 88, 107, 157isfuncd 17129 . . 3 (𝜑 → (1st𝐾)(𝐷 Func 𝐸)(2nd𝐾))
159 df-br 5059 . . 3 ((1st𝐾)(𝐷 Func 𝐸)(2nd𝐾) ↔ ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
160158, 159sylib 220 . 2 (𝜑 → ⟨(1st𝐾), (2nd𝐾)⟩ ∈ (𝐷 Func 𝐸))
16120, 160eqeltrd 2913 1 (𝜑𝐾 ∈ (𝐷 Func 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  cop 4566   class class class wbr 5058  cmpt 5138   × cxp 5547  Rel wrel 5554   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Idccid 16930   Func cfunc 17118   ×c cxpc 17412   curryF ccurf 17454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-hom 16583  df-cco 16584  df-cat 16933  df-cid 16934  df-func 17122  df-xpc 17416  df-curf 17458
This theorem is referenced by:  curf2cl  17475  curfcl  17476
  Copyright terms: Public domain W3C validator