MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curf2ndf Structured version   Visualization version   GIF version

Theorem curf2ndf 17108
Description: As shown in diagval 17101, the currying of the first projection is the diagonal functor. On the other hand, the currying of the second projection is 𝑥𝐶 ↦ (𝑦𝐷𝑦), which is a constant functor of the identity functor at 𝐷. (Contributed by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
curf2ndf.q 𝑄 = (𝐷 FuncCat 𝐷)
curf2ndf.c (𝜑𝐶 ∈ Cat)
curf2ndf.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
curf2ndf (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))

Proof of Theorem curf2ndf
Dummy variables 𝑢 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6817 . . . . . . . . . . 11 (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩)
2 eqid 2760 . . . . . . . . . . . . 13 (𝐶 ×c 𝐷) = (𝐶 ×c 𝐷)
3 eqid 2760 . . . . . . . . . . . . . 14 (Base‘𝐶) = (Base‘𝐶)
4 eqid 2760 . . . . . . . . . . . . . 14 (Base‘𝐷) = (Base‘𝐷)
52, 3, 4xpcbas 17039 . . . . . . . . . . . . 13 ((Base‘𝐶) × (Base‘𝐷)) = (Base‘(𝐶 ×c 𝐷))
6 eqid 2760 . . . . . . . . . . . . 13 (Hom ‘(𝐶 ×c 𝐷)) = (Hom ‘(𝐶 ×c 𝐷))
7 curf2ndf.c . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ Cat)
87ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
9 curf2ndf.d . . . . . . . . . . . . . 14 (𝜑𝐷 ∈ Cat)
109ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
11 eqid 2760 . . . . . . . . . . . . 13 (𝐶 2ndF 𝐷) = (𝐶 2ndF 𝐷)
12 opelxpi 5305 . . . . . . . . . . . . . 14 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1312adantll 752 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
142, 5, 6, 8, 10, 11, 132ndf1 17056 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = (2nd ‘⟨𝑥, 𝑦⟩))
15 vex 3343 . . . . . . . . . . . . 13 𝑥 ∈ V
16 vex 3343 . . . . . . . . . . . . 13 𝑦 ∈ V
1715, 16op2nd 7343 . . . . . . . . . . . 12 (2nd ‘⟨𝑥, 𝑦⟩) = 𝑦
1814, 17syl6eq 2810 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → ((1st ‘(𝐶 2ndF 𝐷))‘⟨𝑥, 𝑦⟩) = 𝑦)
191, 18syl5eq 2806 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) → (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦) = 𝑦)
2019mpteq2dva 4896 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ 𝑦))
21 mptresid 5614 . . . . . . . . 9 (𝑦 ∈ (Base‘𝐷) ↦ 𝑦) = ( I ↾ (Base‘𝐷))
2220, 21syl6eq 2810 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)) = ( I ↾ (Base‘𝐷)))
23 df-ov 6817 . . . . . . . . . . . . . . 15 (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩)
248ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐶 ∈ Cat)
2510ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝐷 ∈ Cat)
2613ad2antrr 764 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑦⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
27 simp-4r 827 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑥 ∈ (Base‘𝐶))
28 simplr 809 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑧 ∈ (Base‘𝐷))
29 opelxpi 5305 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
3027, 28, 29syl2anc 696 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
312, 5, 6, 24, 25, 11, 26, 302ndf2 17057 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩)))
3231fveq1d 6355 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
3323, 32syl5eq 2806 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
34 eqid 2760 . . . . . . . . . . . . . . . . . . . 20 (Hom ‘𝐶) = (Hom ‘𝐶)
35 eqid 2760 . . . . . . . . . . . . . . . . . . . 20 (Id‘𝐶) = (Id‘𝐶)
367adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
37 simpr 479 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
383, 34, 35, 36, 37catidcl 16564 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
3938ad3antrrr 768 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥))
40 simpr 479 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧))
41 opelxpi 5305 . . . . . . . . . . . . . . . . . 18 ((((Id‘𝐶)‘𝑥) ∈ (𝑥(Hom ‘𝐶)𝑥) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
4239, 40, 41syl2anc 696 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
43 eqid 2760 . . . . . . . . . . . . . . . . . 18 (Hom ‘𝐷) = (Hom ‘𝐷)
44 simpllr 817 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → 𝑦 ∈ (Base‘𝐷))
452, 3, 4, 34, 43, 27, 44, 27, 28, 6xpchom2 17047 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑥) × (𝑦(Hom ‘𝐷)𝑧)))
4642, 45eleqtrrd 2842 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))
47 fvres 6369 . . . . . . . . . . . . . . . 16 (⟨((Id‘𝐶)‘𝑥), 𝑓⟩ ∈ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
4846, 47syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩))
49 fvex 6363 . . . . . . . . . . . . . . . 16 ((Id‘𝐶)‘𝑥) ∈ V
50 vex 3343 . . . . . . . . . . . . . . . 16 𝑓 ∈ V
5149, 50op2nd 7343 . . . . . . . . . . . . . . 15 (2nd ‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓
5248, 51syl6eq 2810 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → ((2nd ↾ (⟨𝑥, 𝑦⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑥, 𝑧⟩))‘⟨((Id‘𝐶)‘𝑥), 𝑓⟩) = 𝑓)
5333, 52eqtrd 2794 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧)) → (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓) = 𝑓)
5453mpteq2dva 4896 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓))
55 mptresid 5614 . . . . . . . . . . . 12 (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ 𝑓) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧))
5654, 55syl6eq 2810 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
57563impa 1101 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐷) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
5857mpt2eq3dva 6885 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧))))
59 fveq2 6353 . . . . . . . . . . . 12 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩))
60 df-ov 6817 . . . . . . . . . . . 12 (𝑦(Hom ‘𝐷)𝑧) = ((Hom ‘𝐷)‘⟨𝑦, 𝑧⟩)
6159, 60syl6eqr 2812 . . . . . . . . . . 11 (𝑢 = ⟨𝑦, 𝑧⟩ → ((Hom ‘𝐷)‘𝑢) = (𝑦(Hom ‘𝐷)𝑧))
6261reseq2d 5551 . . . . . . . . . 10 (𝑢 = ⟨𝑦, 𝑧⟩ → ( I ↾ ((Hom ‘𝐷)‘𝑢)) = ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6362mpt2mpt 6918 . . . . . . . . 9 (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ ( I ↾ (𝑦(Hom ‘𝐷)𝑧)))
6458, 63syl6eqr 2812 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓))) = (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢))))
6522, 64opeq12d 4561 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩ = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
66 eqid 2760 . . . . . . . 8 (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))
679adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝐷 ∈ Cat)
682, 7, 9, 112ndfcl 17059 . . . . . . . . 9 (𝜑 → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
6968adantr 472 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
70 eqid 2760 . . . . . . . 8 ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)
7166, 3, 36, 67, 69, 4, 37, 70, 43, 35curf1 17086 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st ‘(𝐶 2ndF 𝐷))𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑓 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐶)‘𝑥)(⟨𝑥, 𝑦⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑥, 𝑧⟩)𝑓)))⟩)
72 eqid 2760 . . . . . . . 8 (idfunc𝐷) = (idfunc𝐷)
7372, 4, 67, 43idfuval 16757 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) = ⟨( I ↾ (Base‘𝐷)), (𝑢 ∈ ((Base‘𝐷) × (Base‘𝐷)) ↦ ( I ↾ ((Hom ‘𝐷)‘𝑢)))⟩)
7465, 71, 733eqtr4d 2804 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = (idfunc𝐷))
75 eqid 2760 . . . . . . 7 (𝑄Δfunc𝐶) = (𝑄Δfunc𝐶)
76 curf2ndf.q . . . . . . . . 9 𝑄 = (𝐷 FuncCat 𝐷)
7776, 9, 9fuccat 16851 . . . . . . . 8 (𝜑𝑄 ∈ Cat)
7877adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑄 ∈ Cat)
7976fucbas 16841 . . . . . . 7 (𝐷 Func 𝐷) = (Base‘𝑄)
8072idfucl 16762 . . . . . . . . 9 (𝐷 ∈ Cat → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
819, 80syl 17 . . . . . . . 8 (𝜑 → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
8281adantr 472 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
83 eqid 2760 . . . . . . 7 ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))
8475, 78, 36, 79, 82, 83, 3, 37diag11 17104 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥) = (idfunc𝐷))
8574, 84eqtr4d 2797 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥) = ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥))
8685mpteq2dva 4896 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
87 relfunc 16743 . . . . . . 7 Rel (𝐶 Func 𝑄)
8866, 76, 7, 9, 68curfcl 17093 . . . . . . 7 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄))
89 1st2ndbr 7385 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
9087, 88, 89sylancr 698 . . . . . 6 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
913, 79, 90funcf1 16747 . . . . 5 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
9291feqmptd 6412 . . . 4 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)))
9375, 77, 7, 79, 81, 83diag1cl 17103 . . . . . . 7 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄))
94 1st2ndbr 7385 . . . . . . 7 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
9587, 93, 94sylancr 698 . . . . . 6 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
963, 79, 95funcf1 16747 . . . . 5 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))):(Base‘𝐶)⟶(𝐷 Func 𝐷))
9796feqmptd 6412 . . . 4 (𝜑 → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶) ↦ ((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)))
9886, 92, 973eqtr4d 2804 . . 3 (𝜑 → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
999ad2antrr 764 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐷 ∈ Cat)
10072, 4, 99idfu1st 16760 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (1st ‘(idfunc𝐷)) = ( I ↾ (Base‘𝐷)))
101100coeq2d 5440 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
102 eqid 2760 . . . . . . . . . . 11 (Id‘𝑄) = (Id‘𝑄)
103 eqid 2760 . . . . . . . . . . 11 (Id‘𝐷) = (Id‘𝐷)
10481ad2antrr 764 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (idfunc𝐷) ∈ (𝐷 Func 𝐷))
10576, 102, 103, 104fucid 16852 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝑄)‘(idfunc𝐷)) = ((Id‘𝐷) ∘ (1st ‘(idfunc𝐷))))
1064, 103cidfn 16561 . . . . . . . . . . . . . 14 (𝐷 ∈ Cat → (Id‘𝐷) Fn (Base‘𝐷))
10799, 106syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) Fn (Base‘𝐷))
108 dffn2 6208 . . . . . . . . . . . . 13 ((Id‘𝐷) Fn (Base‘𝐷) ↔ (Id‘𝐷):(Base‘𝐷)⟶V)
109107, 108sylib 208 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷):(Base‘𝐷)⟶V)
110109feqmptd 6412 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Id‘𝐷) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
111 fcoi1 6239 . . . . . . . . . . . 12 ((Id‘𝐷):(Base‘𝐷)⟶V → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
112109, 111syl 17 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))) = (Id‘𝐷))
1137ad2antrr 764 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝐶 ∈ Cat)
114113adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐶 ∈ Cat)
11599adantr 472 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝐷 ∈ Cat)
116 simplrl 819 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
117116, 29sylan 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑥, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
118 simplrr 820 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
119 opelxpi 5305 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
120118, 119sylan 489 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑦, 𝑧⟩ ∈ ((Base‘𝐶) × (Base‘𝐷)))
1212, 5, 6, 114, 115, 11, 117, 1202ndf2 17057 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩) = (2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩)))
122121oveqd 6831 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)))
123 df-ov 6817 . . . . . . . . . . . . . . 15 (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩)
124 simplr 809 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
125 simpr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑧 ∈ (Base‘𝐷))
1264, 43, 103, 115, 125catidcl 16564 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧))
127 opelxpi 5305 . . . . . . . . . . . . . . . . . 18 ((𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ∧ ((Id‘𝐷)‘𝑧) ∈ (𝑧(Hom ‘𝐷)𝑧)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
128124, 126, 127syl2anc 696 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
129116adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑥 ∈ (Base‘𝐶))
130118adantr 472 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → 𝑦 ∈ (Base‘𝐶))
1312, 3, 4, 34, 43, 129, 125, 130, 125, 6xpchom2 17047 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩) = ((𝑥(Hom ‘𝐶)𝑦) × (𝑧(Hom ‘𝐷)𝑧)))
132128, 131eleqtrrd 2842 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))
133 fvres 6369 . . . . . . . . . . . . . . . 16 (⟨𝑓, ((Id‘𝐷)‘𝑧)⟩ ∈ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩) → ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
134132, 133syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → ((2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
135123, 134syl5eq 2806 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩))
136 fvex 6363 . . . . . . . . . . . . . . 15 ((Id‘𝐷)‘𝑧) ∈ V
13750, 136op2nd 7343 . . . . . . . . . . . . . 14 (2nd ‘⟨𝑓, ((Id‘𝐷)‘𝑧)⟩) = ((Id‘𝐷)‘𝑧)
138135, 137syl6eq 2810 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(2nd ↾ (⟨𝑥, 𝑧⟩(Hom ‘(𝐶 ×c 𝐷))⟨𝑦, 𝑧⟩))((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
139122, 138eqtrd 2794 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑧 ∈ (Base‘𝐷)) → (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)) = ((Id‘𝐷)‘𝑧))
140139mpteq2dva 4896 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ ((Id‘𝐷)‘𝑧)))
141110, 112, 1403eqtr4rd 2805 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝐷) ∘ ( I ↾ (Base‘𝐷))))
142101, 105, 1413eqtr4rd 2805 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))) = ((Id‘𝑄)‘(idfunc𝐷)))
14368ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝐶 2ndF 𝐷) ∈ ((𝐶 ×c 𝐷) Func 𝐷))
144 simpr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
145 eqid 2760 . . . . . . . . . 10 ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)
14666, 3, 113, 99, 143, 4, 34, 103, 116, 118, 144, 145curf2 17090 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑓(⟨𝑥, 𝑧⟩(2nd ‘(𝐶 2ndF 𝐷))⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
14777ad2antrr 764 . . . . . . . . . 10 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑄 ∈ Cat)
14875, 147, 113, 79, 104, 83, 3, 116, 34, 102, 118, 144diag12 17105 . . . . . . . . 9 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓) = ((Id‘𝑄)‘(idfunc𝐷)))
149142, 146, 1483eqtr4d 2804 . . . . . . . 8 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓) = ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓))
150149mpteq2dva 4896 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
151 eqid 2760 . . . . . . . . . 10 (𝐷 Nat 𝐷) = (𝐷 Nat 𝐷)
15276, 151fuchom 16842 . . . . . . . . 9 (𝐷 Nat 𝐷) = (Hom ‘𝑄)
15390adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))(𝐶 Func 𝑄)(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))))
154 simprl 811 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
155 simprr 813 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
1563, 34, 152, 153, 154, 155funcf2 16749 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))‘𝑦)))
157156feqmptd 6412 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)‘𝑓)))
15895adantr 472 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))(𝐶 Func 𝑄)(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
1593, 34, 152, 158, 154, 155funcf2 16749 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦):(𝑥(Hom ‘𝐶)𝑦)⟶(((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑥)(𝐷 Nat 𝐷)((1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))‘𝑦)))
160159feqmptd 6412 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦) = (𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦) ↦ ((𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)‘𝑓)))
161150, 157, 1603eqtr4d 2804 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
1621613impb 1108 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦) = (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦))
163162mpt2eq3dva 6885 . . . 4 (𝜑 → (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
1643, 90funcfn2 16750 . . . . 5 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
165 fnov 6934 . . . . 5 ((2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
166164, 165sylib 208 . . . 4 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))𝑦)))
1673, 95funcfn2 16750 . . . . 5 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)))
168 fnov 6934 . . . . 5 ((2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) Fn ((Base‘𝐶) × (Base‘𝐶)) ↔ (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
169167, 168sylib 208 . . . 4 (𝜑 → (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))) = (𝑥 ∈ (Base‘𝐶), 𝑦 ∈ (Base‘𝐶) ↦ (𝑥(2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))𝑦)))
170163, 166, 1693eqtr4d 2804 . . 3 (𝜑 → (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))) = (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))))
17198, 170opeq12d 4561 . 2 (𝜑 → ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩ = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
172 1st2nd 7382 . . 3 ((Rel (𝐶 Func 𝑄) ∧ (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) ∈ (𝐶 Func 𝑄)) → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
17387, 88, 172sylancr 698 . 2 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ⟨(1st ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷))), (2nd ‘(⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)))⟩)
174 1st2nd 7382 . . 3 ((Rel (𝐶 Func 𝑄) ∧ ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) ∈ (𝐶 Func 𝑄)) → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
17587, 93, 174sylancr 698 . 2 (𝜑 → ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)) = ⟨(1st ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷))), (2nd ‘((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))⟩)
176171, 173, 1753eqtr4d 2804 1 (𝜑 → (⟨𝐶, 𝐷⟩ curryF (𝐶 2ndF 𝐷)) = ((1st ‘(𝑄Δfunc𝐶))‘(idfunc𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cop 4327   class class class wbr 4804  cmpt 4881   I cid 5173   × cxp 5264  cres 5268  ccom 5270  Rel wrel 5271   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  cmpt2 6816  1st c1st 7332  2nd c2nd 7333  Basecbs 16079  Hom chom 16174  Catccat 16546  Idccid 16547   Func cfunc 16735  idfunccidfu 16736   Nat cnat 16822   FuncCat cfuc 16823   ×c cxpc 17029   2ndF c2ndf 17031   curryF ccurf 17071  Δfunccdiag 17073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-hom 16188  df-cco 16189  df-cat 16550  df-cid 16551  df-func 16739  df-idfu 16740  df-nat 16824  df-fuc 16825  df-xpc 17033  df-1stf 17034  df-2ndf 17035  df-curf 17075  df-diag 17077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator