Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  curfpropd Structured version   Visualization version   GIF version

Theorem curfpropd 17074
 Description: If two categories have the same set of objects, morphisms, and compositions, then they curry the same functor to the same result. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
curfpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
curfpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
curfpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
curfpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
curfpropd.a (𝜑𝐴 ∈ Cat)
curfpropd.b (𝜑𝐵 ∈ Cat)
curfpropd.c (𝜑𝐶 ∈ Cat)
curfpropd.d (𝜑𝐷 ∈ Cat)
curfpropd.f (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
Assertion
Ref Expression
curfpropd (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))

Proof of Theorem curfpropd
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 curfpropd.1 . . . . 5 (𝜑 → (Homf𝐴) = (Homf𝐵))
21homfeqbas 16557 . . . 4 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
3 curfpropd.3 . . . . . . . 8 (𝜑 → (Homf𝐶) = (Homf𝐷))
43homfeqbas 16557 . . . . . . 7 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
54adantr 472 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐶) = (Base‘𝐷))
65mpteq1d 4890 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)) = (𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)))
75adantr 472 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
8 eqid 2760 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
9 eqid 2760 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
10 eqid 2760 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
113ad2antrr 764 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Homf𝐶) = (Homf𝐷))
12 simprl 811 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
13 simprr 813 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → 𝑧 ∈ (Base‘𝐶))
148, 9, 10, 11, 12, 13homfeqval 16558 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧))
15 curfpropd.2 . . . . . . . . . . 11 (𝜑 → (compf𝐴) = (compf𝐵))
16 curfpropd.a . . . . . . . . . . 11 (𝜑𝐴 ∈ Cat)
17 curfpropd.b . . . . . . . . . . 11 (𝜑𝐵 ∈ Cat)
181, 15, 16, 17cidpropd 16571 . . . . . . . . . 10 (𝜑 → (Id‘𝐴) = (Id‘𝐵))
1918ad2antrr 764 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (Id‘𝐴) = (Id‘𝐵))
2019fveq1d 6354 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → ((Id‘𝐴)‘𝑥) = ((Id‘𝐵)‘𝑥))
2120oveq1d 6828 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔) = (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))
2214, 21mpteq12dv 4885 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐴)) ∧ (𝑦 ∈ (Base‘𝐶) ∧ 𝑧 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)) = (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))
235, 7, 22mpt2eq123dva 6881 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐴)) → (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))) = (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔))))
246, 23opeq12d 4561 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩ = ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩)
252, 24mpteq12dva 4884 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩) = (𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩))
262adantr 472 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
27 eqid 2760 . . . . . 6 (Base‘𝐴) = (Base‘𝐴)
28 eqid 2760 . . . . . 6 (Hom ‘𝐴) = (Hom ‘𝐴)
29 eqid 2760 . . . . . 6 (Hom ‘𝐵) = (Hom ‘𝐵)
301adantr 472 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (Homf𝐴) = (Homf𝐵))
31 simprl 811 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑥 ∈ (Base‘𝐴))
32 simprr 813 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → 𝑦 ∈ (Base‘𝐴))
3327, 28, 29, 30, 31, 32homfeqval 16558 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑥(Hom ‘𝐴)𝑦) = (𝑥(Hom ‘𝐵)𝑦))
344ad2antrr 764 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (Base‘𝐶) = (Base‘𝐷))
35 curfpropd.4 . . . . . . . . . 10 (𝜑 → (compf𝐶) = (compf𝐷))
36 curfpropd.c . . . . . . . . . 10 (𝜑𝐶 ∈ Cat)
37 curfpropd.d . . . . . . . . . 10 (𝜑𝐷 ∈ Cat)
383, 35, 36, 37cidpropd 16571 . . . . . . . . 9 (𝜑 → (Id‘𝐶) = (Id‘𝐷))
3938ad3antrrr 768 . . . . . . . 8 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (Id‘𝐶) = (Id‘𝐷))
4039fveq1d 6354 . . . . . . 7 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑧) = ((Id‘𝐷)‘𝑧))
4140oveq2d 6829 . . . . . 6 ((((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)) = (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))
4234, 41mpteq12dva 4884 . . . . 5 (((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦)) → (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))) = (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))
4333, 42mpteq12dva 4884 . . . 4 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐴) ∧ 𝑦 ∈ (Base‘𝐴))) → (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))) = (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))
442, 26, 43mpt2eq123dva 6881 . . 3 (𝜑 → (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧))))) = (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧))))))
4525, 44opeq12d 4561 . 2 (𝜑 → ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩ = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
46 eqid 2760 . . 3 (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐴, 𝐶⟩ curryF 𝐹)
47 curfpropd.f . . 3 (𝜑𝐹 ∈ ((𝐴 ×c 𝐶) Func 𝐸))
48 eqid 2760 . . 3 (Id‘𝐴) = (Id‘𝐴)
49 eqid 2760 . . 3 (Id‘𝐶) = (Id‘𝐶)
5046, 27, 16, 36, 47, 8, 9, 48, 28, 49curfval 17064 . 2 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐴) ↦ ⟨(𝑦 ∈ (Base‘𝐶) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐶), 𝑧 ∈ (Base‘𝐶) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧) ↦ (((Id‘𝐴)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐴), 𝑦 ∈ (Base‘𝐴) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐴)𝑦) ↦ (𝑧 ∈ (Base‘𝐶) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐶)‘𝑧)))))⟩)
51 eqid 2760 . . 3 (⟨𝐵, 𝐷⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹)
52 eqid 2760 . . 3 (Base‘𝐵) = (Base‘𝐵)
531, 15, 3, 35, 16, 17, 36, 37xpcpropd 17049 . . . . 5 (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷))
5453oveq1d 6828 . . . 4 (𝜑 → ((𝐴 ×c 𝐶) Func 𝐸) = ((𝐵 ×c 𝐷) Func 𝐸))
5547, 54eleqtrd 2841 . . 3 (𝜑𝐹 ∈ ((𝐵 ×c 𝐷) Func 𝐸))
56 eqid 2760 . . 3 (Base‘𝐷) = (Base‘𝐷)
57 eqid 2760 . . 3 (Id‘𝐵) = (Id‘𝐵)
58 eqid 2760 . . 3 (Id‘𝐷) = (Id‘𝐷)
5951, 52, 17, 37, 55, 56, 10, 57, 29, 58curfval 17064 . 2 (𝜑 → (⟨𝐵, 𝐷⟩ curryF 𝐹) = ⟨(𝑥 ∈ (Base‘𝐵) ↦ ⟨(𝑦 ∈ (Base‘𝐷) ↦ (𝑥(1st𝐹)𝑦)), (𝑦 ∈ (Base‘𝐷), 𝑧 ∈ (Base‘𝐷) ↦ (𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧) ↦ (((Id‘𝐵)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝐹)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝐵), 𝑦 ∈ (Base‘𝐵) ↦ (𝑔 ∈ (𝑥(Hom ‘𝐵)𝑦) ↦ (𝑧 ∈ (Base‘𝐷) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝐹)⟨𝑦, 𝑧⟩)((Id‘𝐷)‘𝑧)))))⟩)
6045, 50, 593eqtr4d 2804 1 (𝜑 → (⟨𝐴, 𝐶⟩ curryF 𝐹) = (⟨𝐵, 𝐷⟩ curryF 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ⟨cop 4327   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6813   ↦ cmpt2 6815  1st c1st 7331  2nd c2nd 7332  Basecbs 16059  Hom chom 16154  Catccat 16526  Idccid 16527  Homf chomf 16528  compfccomf 16529   Func cfunc 16715   ×c cxpc 17009   curryF ccurf 17051 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-hom 16168  df-cco 16169  df-cat 16530  df-cid 16531  df-homf 16532  df-comf 16533  df-xpc 17013  df-curf 17055 This theorem is referenced by:  yonpropd  17109  oppcyon  17110
 Copyright terms: Public domain W3C validator