Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  curry2ima Structured version   Visualization version   GIF version

Theorem curry2ima 29320
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.)
Hypothesis
Ref Expression
curry2ima.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2ima ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦

Proof of Theorem curry2ima
StepHypRef Expression
1 simp1 1059 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹 Fn (𝐴 × 𝐵))
2 dffn2 6006 . . . . . 6 (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V)
31, 2sylib 208 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐹:(𝐴 × 𝐵)⟶V)
4 simp2 1060 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐶𝐵)
5 curry2ima.1 . . . . . 6 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
65curry2f 7219 . . . . 5 ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶𝐵) → 𝐺:𝐴⟶V)
73, 4, 6syl2anc 692 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐺:𝐴⟶V)
8 ffun 6007 . . . 4 (𝐺:𝐴⟶V → Fun 𝐺)
97, 8syl 17 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → Fun 𝐺)
10 simp3 1061 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷𝐴)
11 fdm 6010 . . . . 5 (𝐺:𝐴⟶V → dom 𝐺 = 𝐴)
127, 11syl 17 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → dom 𝐺 = 𝐴)
1310, 12sseqtr4d 3626 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → 𝐷 ⊆ dom 𝐺)
14 dfimafn 6203 . . 3 ((Fun 𝐺𝐷 ⊆ dom 𝐺) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
159, 13, 14syl2anc 692 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦})
165curry2val 7220 . . . . . . 7 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝑥) = (𝑥𝐹𝐶))
17163adant3 1079 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝑥) = (𝑥𝐹𝐶))
1817eqeq1d 2628 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦))
19 eqcom 2633 . . . . 5 ((𝑥𝐹𝐶) = 𝑦𝑦 = (𝑥𝐹𝐶))
2018, 19syl6bb 276 . . . 4 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → ((𝐺𝑥) = 𝑦𝑦 = (𝑥𝐹𝐶)))
2120rexbidv 3050 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (∃𝑥𝐷 (𝐺𝑥) = 𝑦 ↔ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)))
2221abbidv 2744 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → {𝑦 ∣ ∃𝑥𝐷 (𝐺𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
2315, 22eqtrd 2660 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵𝐷𝐴) → (𝐺𝐷) = {𝑦 ∣ ∃𝑥𝐷 𝑦 = (𝑥𝐹𝐶)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1992  {cab 2612  wrex 2913  Vcvv 3191  wss 3560  {csn 4153   × cxp 5077  ccnv 5078  dom cdm 5079  cres 5081  cima 5082  ccom 5083  Fun wfun 5844   Fn wfn 5845  wf 5846  cfv 5850  (class class class)co 6605  1st c1st 7114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-1st 7116  df-2nd 7117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator