![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > curry2ima | Structured version Visualization version GIF version |
Description: The image of a curried function with a constant second argument. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
Ref | Expression |
---|---|
curry2ima.1 | ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) |
Ref | Expression |
---|---|
curry2ima | ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1081 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹 Fn (𝐴 × 𝐵)) | |
2 | dffn2 6085 | . . . . . 6 ⊢ (𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹:(𝐴 × 𝐵)⟶V) | |
3 | 1, 2 | sylib 208 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐹:(𝐴 × 𝐵)⟶V) |
4 | simp2 1082 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐶 ∈ 𝐵) | |
5 | curry2ima.1 | . . . . . 6 ⊢ 𝐺 = (𝐹 ∘ ◡(1st ↾ (V × {𝐶}))) | |
6 | 5 | curry2f 7318 | . . . . 5 ⊢ ((𝐹:(𝐴 × 𝐵)⟶V ∧ 𝐶 ∈ 𝐵) → 𝐺:𝐴⟶V) |
7 | 3, 4, 6 | syl2anc 694 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐺:𝐴⟶V) |
8 | ffun 6086 | . . . 4 ⊢ (𝐺:𝐴⟶V → Fun 𝐺) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → Fun 𝐺) |
10 | simp3 1083 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ 𝐴) | |
11 | fdm 6089 | . . . . 5 ⊢ (𝐺:𝐴⟶V → dom 𝐺 = 𝐴) | |
12 | 7, 11 | syl 17 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → dom 𝐺 = 𝐴) |
13 | 10, 12 | sseqtr4d 3675 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → 𝐷 ⊆ dom 𝐺) |
14 | dfimafn 6284 | . . 3 ⊢ ((Fun 𝐺 ∧ 𝐷 ⊆ dom 𝐺) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) | |
15 | 9, 13, 14 | syl2anc 694 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦}) |
16 | 5 | curry2val 7319 | . . . . . . 7 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
17 | 16 | 3adant3 1101 | . . . . . 6 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺‘𝑥) = (𝑥𝐹𝐶)) |
18 | 17 | eqeq1d 2653 | . . . . 5 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ (𝑥𝐹𝐶) = 𝑦)) |
19 | eqcom 2658 | . . . . 5 ⊢ ((𝑥𝐹𝐶) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶)) | |
20 | 18, 19 | syl6bb 276 | . . . 4 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → ((𝐺‘𝑥) = 𝑦 ↔ 𝑦 = (𝑥𝐹𝐶))) |
21 | 20 | rexbidv 3081 | . . 3 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦 ↔ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶))) |
22 | 21 | abbidv 2770 | . 2 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → {𝑦 ∣ ∃𝑥 ∈ 𝐷 (𝐺‘𝑥) = 𝑦} = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
23 | 15, 22 | eqtrd 2685 | 1 ⊢ ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶 ∈ 𝐵 ∧ 𝐷 ⊆ 𝐴) → (𝐺 “ 𝐷) = {𝑦 ∣ ∃𝑥 ∈ 𝐷 𝑦 = (𝑥𝐹𝐶)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 {cab 2637 ∃wrex 2942 Vcvv 3231 ⊆ wss 3607 {csn 4210 × cxp 5141 ◡ccnv 5142 dom cdm 5143 ↾ cres 5145 “ cima 5146 ∘ ccom 5147 Fun wfun 5920 Fn wfn 5921 ⟶wf 5922 ‘cfv 5926 (class class class)co 6690 1st c1st 7208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-1st 7210 df-2nd 7211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |