![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrexilem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for cusgrexi 26395. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} |
Ref | Expression |
---|---|
cusgrexilem2 | ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . . 4 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ 𝑉) | |
2 | eldifi 3765 | . . . 4 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛 ∈ 𝑉) | |
3 | prelpwi 4945 | . . . 4 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → {𝑣, 𝑛} ∈ 𝒫 𝑉) | |
4 | 1, 2, 3 | syl2an 493 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ 𝒫 𝑉) |
5 | eldifsni 4353 | . . . . . 6 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑛 ≠ 𝑣) | |
6 | 5 | necomd 2878 | . . . . 5 ⊢ (𝑛 ∈ (𝑉 ∖ {𝑣}) → 𝑣 ≠ 𝑛) |
7 | 6 | adantl 481 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → 𝑣 ≠ 𝑛) |
8 | hashprg 13220 | . . . . 5 ⊢ ((𝑣 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑣 ≠ 𝑛 ↔ (#‘{𝑣, 𝑛}) = 2)) | |
9 | 1, 2, 8 | syl2an 493 | . . . 4 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (𝑣 ≠ 𝑛 ↔ (#‘{𝑣, 𝑛}) = 2)) |
10 | 7, 9 | mpbid 222 | . . 3 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → (#‘{𝑣, 𝑛}) = 2) |
11 | fveq2 6229 | . . . . 5 ⊢ (𝑥 = {𝑣, 𝑛} → (#‘𝑥) = (#‘{𝑣, 𝑛})) | |
12 | 11 | eqeq1d 2653 | . . . 4 ⊢ (𝑥 = {𝑣, 𝑛} → ((#‘𝑥) = 2 ↔ (#‘{𝑣, 𝑛}) = 2)) |
13 | rnresi 5514 | . . . . 5 ⊢ ran ( I ↾ 𝑃) = 𝑃 | |
14 | usgrexi.p | . . . . 5 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} | |
15 | 13, 14 | eqtri 2673 | . . . 4 ⊢ ran ( I ↾ 𝑃) = {𝑥 ∈ 𝒫 𝑉 ∣ (#‘𝑥) = 2} |
16 | 12, 15 | elrab2 3399 | . . 3 ⊢ ({𝑣, 𝑛} ∈ ran ( I ↾ 𝑃) ↔ ({𝑣, 𝑛} ∈ 𝒫 𝑉 ∧ (#‘{𝑣, 𝑛}) = 2)) |
17 | 4, 10, 16 | sylanbrc 699 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ∈ ran ( I ↾ 𝑃)) |
18 | sseq2 3660 | . . 3 ⊢ (𝑒 = {𝑣, 𝑛} → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛})) | |
19 | 18 | adantl 481 | . 2 ⊢ ((((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) ∧ 𝑒 = {𝑣, 𝑛}) → ({𝑣, 𝑛} ⊆ 𝑒 ↔ {𝑣, 𝑛} ⊆ {𝑣, 𝑛})) |
20 | ssid 3657 | . . 3 ⊢ {𝑣, 𝑛} ⊆ {𝑣, 𝑛} | |
21 | 20 | a1i 11 | . 2 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → {𝑣, 𝑛} ⊆ {𝑣, 𝑛}) |
22 | 17, 19, 21 | rspcedvd 3348 | 1 ⊢ (((𝑉 ∈ 𝑊 ∧ 𝑣 ∈ 𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑣})) → ∃𝑒 ∈ ran ( I ↾ 𝑃){𝑣, 𝑛} ⊆ 𝑒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∃wrex 2942 {crab 2945 ∖ cdif 3604 ⊆ wss 3607 𝒫 cpw 4191 {csn 4210 {cpr 4212 I cid 5052 ran crn 5144 ↾ cres 5145 ‘cfv 5926 2c2 11108 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: cusgrexi 26395 structtocusgr 26398 |
Copyright terms: Public domain | W3C validator |