MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsize Structured version   Visualization version   GIF version

Theorem cusgrsize 27228
Description: The size of a finite complete simple graph with 𝑛 vertices (𝑛 ∈ ℕ0) is (𝑛C2) ("𝑛 choose 2") resp. (((𝑛 − 1)∗𝑛) / 2), see definition in section I.1 of [Bollobas] p. 3 . (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 10-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrsize ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2))

Proof of Theorem cusgrsize
Dummy variables 𝑒 𝑓 𝑛 𝑣 𝑐 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrsizeindb0.e . . . . 5 𝐸 = (Edg‘𝐺)
2 edgval 26826 . . . . 5 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2842 . . . 4 𝐸 = ran (iEdg‘𝐺)
43a1i 11 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐸 = ran (iEdg‘𝐺))
54fveq2d 6667 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = (♯‘ran (iEdg‘𝐺)))
6 cusgrsizeindb0.v . . . . 5 𝑉 = (Vtx‘𝐺)
76opeq1i 4798 . . . 4 𝑉, (iEdg‘𝐺)⟩ = ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩
8 cusgrop 27212 . . . 4 (𝐺 ∈ ComplUSGraph → ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ ComplUSGraph)
97, 8eqeltrid 2915 . . 3 (𝐺 ∈ ComplUSGraph → ⟨𝑉, (iEdg‘𝐺)⟩ ∈ ComplUSGraph)
10 fvex 6676 . . . 4 (iEdg‘𝐺) ∈ V
11 fvex 6676 . . . . 5 (Edg‘⟨𝑣, 𝑒⟩) ∈ V
12 rabexg 5225 . . . . . 6 ((Edg‘⟨𝑣, 𝑒⟩) ∈ V → {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} ∈ V)
1312resiexd 6971 . . . . 5 ((Edg‘⟨𝑣, 𝑒⟩) ∈ V → ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) ∈ V)
1411, 13ax-mp 5 . . . 4 ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) ∈ V
15 rneq 5799 . . . . . 6 (𝑒 = (iEdg‘𝐺) → ran 𝑒 = ran (iEdg‘𝐺))
1615fveq2d 6667 . . . . 5 (𝑒 = (iEdg‘𝐺) → (♯‘ran 𝑒) = (♯‘ran (iEdg‘𝐺)))
17 fveq2 6663 . . . . . 6 (𝑣 = 𝑉 → (♯‘𝑣) = (♯‘𝑉))
1817oveq1d 7163 . . . . 5 (𝑣 = 𝑉 → ((♯‘𝑣)C2) = ((♯‘𝑉)C2))
1916, 18eqeqan12rd 2838 . . . 4 ((𝑣 = 𝑉𝑒 = (iEdg‘𝐺)) → ((♯‘ran 𝑒) = ((♯‘𝑣)C2) ↔ (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2)))
20 rneq 5799 . . . . . 6 (𝑒 = 𝑓 → ran 𝑒 = ran 𝑓)
2120fveq2d 6667 . . . . 5 (𝑒 = 𝑓 → (♯‘ran 𝑒) = (♯‘ran 𝑓))
22 fveq2 6663 . . . . . 6 (𝑣 = 𝑤 → (♯‘𝑣) = (♯‘𝑤))
2322oveq1d 7163 . . . . 5 (𝑣 = 𝑤 → ((♯‘𝑣)C2) = ((♯‘𝑤)C2))
2421, 23eqeqan12rd 2838 . . . 4 ((𝑣 = 𝑤𝑒 = 𝑓) → ((♯‘ran 𝑒) = ((♯‘𝑣)C2) ↔ (♯‘ran 𝑓) = ((♯‘𝑤)C2)))
25 vex 3496 . . . . . . 7 𝑣 ∈ V
26 vex 3496 . . . . . . 7 𝑒 ∈ V
2725, 26opvtxfvi 26786 . . . . . 6 (Vtx‘⟨𝑣, 𝑒⟩) = 𝑣
2827eqcomi 2828 . . . . 5 𝑣 = (Vtx‘⟨𝑣, 𝑒⟩)
29 eqid 2819 . . . . 5 (Edg‘⟨𝑣, 𝑒⟩) = (Edg‘⟨𝑣, 𝑒⟩)
30 eqid 2819 . . . . 5 {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} = {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}
31 eqid 2819 . . . . 5 ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩ = ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩
3228, 29, 30, 31cusgrres 27222 . . . 4 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ 𝑛𝑣) → ⟨(𝑣 ∖ {𝑛}), ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})⟩ ∈ ComplUSGraph)
33 rneq 5799 . . . . . . 7 (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) → ran 𝑓 = ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}))
3433fveq2d 6667 . . . . . 6 (𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) → (♯‘ran 𝑓) = (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})))
3534adantl 484 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → (♯‘ran 𝑓) = (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})))
36 fveq2 6663 . . . . . . 7 (𝑤 = (𝑣 ∖ {𝑛}) → (♯‘𝑤) = (♯‘(𝑣 ∖ {𝑛})))
3736adantr 483 . . . . . 6 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → (♯‘𝑤) = (♯‘(𝑣 ∖ {𝑛})))
3837oveq1d 7163 . . . . 5 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → ((♯‘𝑤)C2) = ((♯‘(𝑣 ∖ {𝑛}))C2))
3935, 38eqeq12d 2835 . . . 4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) → ((♯‘ran 𝑓) = ((♯‘𝑤)C2) ↔ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
40 edgopval 26828 . . . . . . . . 9 ((𝑣 ∈ V ∧ 𝑒 ∈ V) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
4140el2v 3500 . . . . . . . 8 (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒
4241a1i 11 . . . . . . 7 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
4342eqcomd 2825 . . . . . 6 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → ran 𝑒 = (Edg‘⟨𝑣, 𝑒⟩))
4443fveq2d 6667 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘ran 𝑒) = (♯‘(Edg‘⟨𝑣, 𝑒⟩)))
45 cusgrusgr 27193 . . . . . . 7 (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph → ⟨𝑣, 𝑒⟩ ∈ USGraph)
46 usgruhgr 26960 . . . . . . 7 (⟨𝑣, 𝑒⟩ ∈ USGraph → ⟨𝑣, 𝑒⟩ ∈ UHGraph)
4745, 46syl 17 . . . . . 6 (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph → ⟨𝑣, 𝑒⟩ ∈ UHGraph)
4828, 29cusgrsizeindb0 27223 . . . . . 6 ((⟨𝑣, 𝑒⟩ ∈ UHGraph ∧ (♯‘𝑣) = 0) → (♯‘(Edg‘⟨𝑣, 𝑒⟩)) = ((♯‘𝑣)C2))
4947, 48sylan 582 . . . . 5 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘(Edg‘⟨𝑣, 𝑒⟩)) = ((♯‘𝑣)C2))
5044, 49eqtrd 2854 . . . 4 ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = 0) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
51 rnresi 5936 . . . . . . . . . 10 ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) = {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}
5251fveq2i 6666 . . . . . . . . 9 (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = (♯‘{𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})
5341a1i 11 . . . . . . . . . . 11 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (Edg‘⟨𝑣, 𝑒⟩) = ran 𝑒)
5453rabeqdv 3483 . . . . . . . . . 10 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐} = {𝑐 ∈ ran 𝑒𝑛𝑐})
5554fveq2d 6667 . . . . . . . . 9 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (♯‘{𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐}) = (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}))
5652, 55syl5eq 2866 . . . . . . . 8 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}))
5756eqeq1d 2821 . . . . . . 7 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2) ↔ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
5857biimpd 231 . . . . . 6 (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) → ((♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2) → (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
5958imdistani 571 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)))
6041eqcomi 2828 . . . . . . 7 ran 𝑒 = (Edg‘⟨𝑣, 𝑒⟩)
61 eqid 2819 . . . . . . 7 {𝑐 ∈ ran 𝑒𝑛𝑐} = {𝑐 ∈ ran 𝑒𝑛𝑐}
6228, 60, 61cusgrsize2inds 27227 . . . . . 6 ((𝑦 + 1) ∈ ℕ0 → ((⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) → ((♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))))
6362imp31 420 . . . . 5 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘{𝑐 ∈ ran 𝑒𝑛𝑐}) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
6459, 63syl 17 . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (⟨𝑣, 𝑒⟩ ∈ ComplUSGraph ∧ (♯‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ (♯‘ran ( I ↾ {𝑐 ∈ (Edg‘⟨𝑣, 𝑒⟩) ∣ 𝑛𝑐})) = ((♯‘(𝑣 ∖ {𝑛}))C2)) → (♯‘ran 𝑒) = ((♯‘𝑣)C2))
6510, 14, 19, 24, 32, 39, 50, 64opfi1ind 13852 . . 3 ((⟨𝑉, (iEdg‘𝐺)⟩ ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2))
669, 65sylan 582 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘ran (iEdg‘𝐺)) = ((♯‘𝑉)C2))
675, 66eqtrd 2854 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (♯‘𝐸) = ((♯‘𝑉)C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wnel 3121  {crab 3140  Vcvv 3493  cdif 3931  {csn 4559  cop 4565   I cid 5452  ran crn 5549  cres 5550  cfv 6348  (class class class)co 7148  Fincfn 8501  0cc0 10529  1c1 10530   + caddc 10532  2c2 11684  0cn0 11889  Ccbc 13654  chash 13682  Vtxcvtx 26773  iEdgciedg 26774  Edgcedg 26824  UHGraphcuhgr 26833  USGraphcusgr 26926  ComplUSGraphccusgr 27184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12885  df-seq 13362  df-fac 13626  df-bc 13655  df-hash 13683  df-vtx 26775  df-iedg 26776  df-edg 26825  df-uhgr 26835  df-upgr 26859  df-umgr 26860  df-uspgr 26927  df-usgr 26928  df-fusgr 27091  df-nbgr 27107  df-uvtx 27160  df-cplgr 27185  df-cusgr 27186
This theorem is referenced by:  fusgrmaxsize  27238
  Copyright terms: Public domain W3C validator