MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgruvtxb Structured version   Visualization version   GIF version

Theorem cusgruvtxb 26299
Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgruvtxb (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉))

Proof of Theorem cusgruvtxb
StepHypRef Expression
1 iscusgr 26295 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
2 ibar 525 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)))
3 iscusgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
43cplgruvtxb 26292 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ (UnivVtx‘𝐺) = 𝑉))
52, 4bitr3d 270 . 2 (𝐺 ∈ USGraph → ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (UnivVtx‘𝐺) = 𝑉))
61, 5syl5bb 272 1 (𝐺 ∈ USGraph → (𝐺 ∈ ComplUSGraph ↔ (UnivVtx‘𝐺) = 𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1481  wcel 1988  cfv 5876  Vtxcvtx 25855   USGraph cusgr 26025  UnivVtxcuvtxa 26206  ComplGraphccplgr 26207  ComplUSGraphccusgr 26208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-iota 5839  df-fun 5878  df-fv 5884  df-ov 6638  df-uvtxa 26211  df-cplgr 26212  df-cusgr 26213
This theorem is referenced by:  vdiscusgrb  26407  vdiscusgr  26408
  Copyright terms: Public domain W3C validator