HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvbr Structured version   Visualization version   GIF version

Theorem cvbr 30053
Description: Binary relation expressing 𝐵 covers 𝐴, which means that 𝐵 is larger than 𝐴 and there is nothing in between. Definition 3.2.18 of [PtakPulmannova] p. 68. (Contributed by NM, 4-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvbr ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem cvbr
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq1 2900 . . . . 5 (𝑦 = 𝐴 → (𝑦C𝐴C ))
21anbi1d 631 . . . 4 (𝑦 = 𝐴 → ((𝑦C𝑧C ) ↔ (𝐴C𝑧C )))
3 psseq1 4063 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑧𝐴𝑧))
4 psseq1 4063 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
54anbi1d 631 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝑧)))
65rexbidv 3297 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝑧)))
76notbid 320 . . . . 5 (𝑦 = 𝐴 → (¬ ∃𝑥C (𝑦𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))
83, 7anbi12d 632 . . . 4 (𝑦 = 𝐴 → ((𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)) ↔ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))))
92, 8anbi12d 632 . . 3 (𝑦 = 𝐴 → (((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧))) ↔ ((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)))))
10 eleq1 2900 . . . . 5 (𝑧 = 𝐵 → (𝑧C𝐵C ))
1110anbi2d 630 . . . 4 (𝑧 = 𝐵 → ((𝐴C𝑧C ) ↔ (𝐴C𝐵C )))
12 psseq2 4064 . . . . 5 (𝑧 = 𝐵 → (𝐴𝑧𝐴𝐵))
13 psseq2 4064 . . . . . . . 8 (𝑧 = 𝐵 → (𝑥𝑧𝑥𝐵))
1413anbi2d 630 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴𝑥𝑥𝑧) ↔ (𝐴𝑥𝑥𝐵)))
1514rexbidv 3297 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1615notbid 320 . . . . 5 (𝑧 = 𝐵 → (¬ ∃𝑥C (𝐴𝑥𝑥𝑧) ↔ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))
1712, 16anbi12d 632 . . . 4 (𝑧 = 𝐵 → ((𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧)) ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
1811, 17anbi12d 632 . . 3 (𝑧 = 𝐵 → (((𝐴C𝑧C ) ∧ (𝐴𝑧 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝑧))) ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
19 df-cv 30050 . . 3 = {⟨𝑦, 𝑧⟩ ∣ ((𝑦C𝑧C ) ∧ (𝑦𝑧 ∧ ¬ ∃𝑥C (𝑦𝑥𝑥𝑧)))}
209, 18, 19brabg 5418 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ ((𝐴C𝐵C ) ∧ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)))))
2120bianabs 544 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wrex 3139  wpss 3936   class class class wbr 5058   C cch 28700   ccv 28735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-br 5059  df-opab 5121  df-cv 30050
This theorem is referenced by:  cvbr2  30054  cvcon3  30055  cvpss  30056  cvnbtwn  30057
  Copyright terms: Public domain W3C validator