Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmp Structured version   Visualization version   GIF version

Theorem cvgcmp 14592
 Description: A comparison test for convergence of a real infinite series. Exercise 3 of [Gleason] p. 182. (Contributed by NM, 1-May-2005.) (Revised by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmp.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
cvgcmp.6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
cvgcmp.7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmp (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍

Proof of Theorem cvgcmp
Dummy variables 𝑛 𝑚 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 seqex 12843 . . 3 seq𝑀( + , 𝐺) ∈ V
32a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
4 cvgcmp.2 . . . . . . . 8 (𝜑𝑁𝑍)
54, 1syl6eleq 2740 . . . . . . 7 (𝜑𝑁 ∈ (ℤ𝑀))
6 eluzel2 11730 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
75, 6syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
8 cvgcmp.5 . . . . . 6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
91climcau 14445 . . . . . 6 ((𝑀 ∈ ℤ ∧ seq𝑀( + , 𝐹) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
107, 8, 9syl2anc 694 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)
11 cvgcmp.3 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 7, 11serfre 12870 . . . . . . . . . 10 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelrnda 6399 . . . . . . . . 9 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
1413recnd 10106 . . . . . . . 8 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
1514ralrimiva 2995 . . . . . . 7 (𝜑 → ∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
161r19.29uz 14134 . . . . . . . 8 ((∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
1716ex 449 . . . . . . 7 (∀𝑛𝑍 (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1815, 17syl 17 . . . . . 6 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1918ralimdv 2992 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
2010, 19mpd 15 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥))
211uztrn2 11743 . . . . . . . . . . 11 ((𝑁𝑍𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
224, 21sylan 487 . . . . . . . . . 10 ((𝜑𝑛 ∈ (ℤ𝑁)) → 𝑛𝑍)
23 cvgcmp.4 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
241, 7, 23serfre 12870 . . . . . . . . . . . 12 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
2524ffvelrnda 6399 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
2625recnd 10106 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2722, 26syldan 486 . . . . . . . . 9 ((𝜑𝑛 ∈ (ℤ𝑁)) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2827ralrimiva 2995 . . . . . . . 8 (𝜑 → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
2928adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
30 simpll 805 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝜑)
3130, 12syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐹):𝑍⟶ℝ)
3230, 4syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑁𝑍)
33 simprl 809 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑁))
341uztrn2 11743 . . . . . . . . . . . . . . . 16 ((𝑁𝑍𝑚 ∈ (ℤ𝑁)) → 𝑚𝑍)
3532, 33, 34syl2anc 694 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚𝑍)
3631, 35ffvelrnd 6400 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ∈ ℝ)
37 eqid 2651 . . . . . . . . . . . . . . . . . 18 (ℤ𝑁) = (ℤ𝑁)
3837uztrn2 11743 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚)) → 𝑛 ∈ (ℤ𝑁))
3938adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑁))
4032, 39, 21syl2anc 694 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛𝑍)
4130, 40, 13syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
4230, 40, 25syl2anc 694 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
4330, 24syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → seq𝑀( + , 𝐺):𝑍⟶ℝ)
4443, 35ffvelrnd 6400 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℝ)
4542, 44resubcld 10496 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ)
4635, 1syl6eleq 2740 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑚 ∈ (ℤ𝑀))
47 simprr 811 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑚))
48 elfzuz 12376 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
4948, 1syl6eleqr 2741 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
50 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
51 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑘 → (𝐺𝑚) = (𝐺𝑘))
5250, 51oveq12d 6708 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑘 → ((𝐹𝑚) − (𝐺𝑚)) = ((𝐹𝑘) − (𝐺𝑘)))
53 eqid 2651 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))) = (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))
54 ovex 6718 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐹𝑘) − (𝐺𝑘)) ∈ V
5552, 53, 54fvmpt 6321 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍 → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5655adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
5711, 23resubcld 10496 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → ((𝐹𝑘) − (𝐺𝑘)) ∈ ℝ)
5856, 57eqeltrd 2730 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
5930, 49, 58syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) ∈ ℝ)
60 elfzuz 12376 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ((𝑚 + 1)...𝑛) → 𝑘 ∈ (ℤ‘(𝑚 + 1)))
61 peano2uz 11779 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 ∈ (ℤ𝑁) → (𝑚 + 1) ∈ (ℤ𝑁))
6233, 61syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (𝑚 + 1) ∈ (ℤ𝑁))
6337uztrn2 11743 . . . . . . . . . . . . . . . . . . . . 21 (((𝑚 + 1) ∈ (ℤ𝑁) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
6462, 63sylan 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 𝑘 ∈ (ℤ𝑁))
65 cvgcmp.7 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ≤ (𝐹𝑘))
661uztrn2 11743 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
674, 66sylan 487 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
6811, 23subge0d 10655 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘𝑍) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
6967, 68syldan 486 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘 ∈ (ℤ𝑁)) → (0 ≤ ((𝐹𝑘) − (𝐺𝑘)) ↔ (𝐺𝑘) ≤ (𝐹𝑘)))
7065, 69mpbird 247 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝐹𝑘) − (𝐺𝑘)))
7167, 55syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
7270, 71breqtrrd 4713 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7330, 72sylan 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7464, 73syldan 486 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7560, 74sylan2 490 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘))
7646, 47, 59, 75sermono 12873 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) ≤ (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛))
77 elfzuz 12376 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (𝑀...𝑚) → 𝑘 ∈ (ℤ𝑀))
7877, 1syl6eleqr 2741 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ (𝑀...𝑚) → 𝑘𝑍)
7911recnd 10106 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
8030, 78, 79syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐹𝑘) ∈ ℂ)
8123recnd 10106 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
8230, 78, 81syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → (𝐺𝑘) ∈ ℂ)
8330, 78, 56syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑚)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8446, 80, 82, 83sersub 12884 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑚) = ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)))
8540, 1syl6eleq 2740 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑛 ∈ (ℤ𝑀))
8630, 49, 79syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℂ)
8730, 49, 81syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℂ)
8830, 49, 56syl2an 493 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚)))‘𝑘) = ((𝐹𝑘) − (𝐺𝑘)))
8985, 86, 87, 88sersub 12884 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , (𝑚𝑍 ↦ ((𝐹𝑚) − (𝐺𝑚))))‘𝑛) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
9076, 84, 893brtr3d 4716 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)))
9141, 42resubcld 10496 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ∈ ℝ)
9236, 44, 91lesubaddd 10662 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑚) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) ↔ (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚))))
9390, 92mpbid 222 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9441recnd 10106 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ)
9542recnd 10106 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
9644recnd 10106 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ∈ ℂ)
9794, 95, 96subsubd 10458 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑛)) + (seq𝑀( + , 𝐺)‘𝑚)))
9893, 97breqtrrd 4713 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))))
9936, 41, 45, 98lesubd 10669 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
10041, 36resubcld 10496 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ)
101 rpre 11877 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
102101ad2antlr 763 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → 𝑥 ∈ ℝ)
103 lelttr 10166 . . . . . . . . . . . . . 14 ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ∈ ℝ ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10445, 100, 102, 103syl3anc 1366 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) ≤ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) ∧ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10599, 104mpand 711 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥 → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
10630, 49, 11syl2an 493 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℝ)
10760, 64sylan2 490 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 𝑘 ∈ (ℤ𝑁))
108 0red 10079 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ∈ ℝ)
10967, 23syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐺𝑘) ∈ ℝ)
11067, 11syldan 486 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → (𝐹𝑘) ∈ ℝ)
111 cvgcmp.6 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
112108, 109, 110, 111, 65letrd 10232 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐹𝑘))
11330, 112sylan 487 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐹𝑘))
114107, 113syldan 486 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐹𝑘))
11546, 47, 106, 114sermono 12873 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐹)‘𝑚) ≤ (seq𝑀( + , 𝐹)‘𝑛))
11636, 41, 115abssubge0d 14214 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) = ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)))
117116breq1d 4695 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚)) < 𝑥))
11830, 49, 23syl2an 493 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℝ)
11930, 111sylan 487 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ𝑁)) → 0 ≤ (𝐺𝑘))
12064, 119syldan 486 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ (ℤ‘(𝑚 + 1))) → 0 ≤ (𝐺𝑘))
12160, 120sylan2 490 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) ∧ 𝑘 ∈ ((𝑚 + 1)...𝑛)) → 0 ≤ (𝐺𝑘))
12246, 47, 118, 121sermono 12873 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (seq𝑀( + , 𝐺)‘𝑚) ≤ (seq𝑀( + , 𝐺)‘𝑛))
12344, 42, 122abssubge0d 14214 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)))
124123breq1d 4695 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚)) < 𝑥))
125105, 117, 1243imtr4d 283 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑚 ∈ (ℤ𝑁) ∧ 𝑛 ∈ (ℤ𝑚))) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
126125anassrs 681 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → ((abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
127126adantld 482 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
128127ralimdva 2991 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑚 ∈ (ℤ𝑁)) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
129128reximdva 3046 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
13037r19.29uz 14134 . . . . . . 7 ((∀𝑛 ∈ (ℤ𝑁)(seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
13129, 129, 130syl6an 567 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
132131ralimdva 2991 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1331, 37cau4 14140 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1344, 133syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥)))
1351, 37cau4 14140 . . . . . 6 (𝑁𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
1364, 135syl 17 . . . . 5 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑁)∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
137132, 134, 1363imtr4d 283 . . . 4 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐹)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐹)‘𝑛) − (seq𝑀( + , 𝐹)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
13820, 137mpd 15 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1391uztrn2 11743 . . . . . . . 8 ((𝑚𝑍𝑛 ∈ (ℤ𝑚)) → 𝑛𝑍)
140 simpr 476 . . . . . . . . 9 (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)
14125biantrurd 528 . . . . . . . . 9 ((𝜑𝑛𝑍) → ((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥 ↔ ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
142140, 141syl5ib 234 . . . . . . . 8 ((𝜑𝑛𝑍) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
143139, 142sylan2 490 . . . . . . 7 ((𝜑 ∧ (𝑚𝑍𝑛 ∈ (ℤ𝑚))) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
144143anassrs 681 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑛 ∈ (ℤ𝑚)) → (((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
145144ralimdva 2991 . . . . 5 ((𝜑𝑚𝑍) → (∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
146145reximdva 3046 . . . 4 (𝜑 → (∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∃𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
147146ralimdv 2992 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥)))
148138, 147mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑛 ∈ (ℤ𝑚)((seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ ∧ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑚))) < 𝑥))
1491, 3, 148caurcvg2 14452 1 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1523   ∈ wcel 2030  ∀wral 2941  ∃wrex 2942  Vcvv 3231   class class class wbr 4685   ↦ cmpt 4762  dom cdm 5143  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112   ≤ cle 10113   − cmin 10304  ℤcz 11415  ℤ≥cuz 11725  ℝ+crp 11870  ...cfz 12364  seqcseq 12841  abscabs 14018   ⇝ cli 14259 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264 This theorem is referenced by:  cvgcmpce  14594  rpnnen2lem5  14991  aaliou3lem3  24144
 Copyright terms: Public domain W3C validator