MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmpce Structured version   Visualization version   GIF version

Theorem cvgcmpce 15175
Description: A comparison test for convergence of a complex infinite series. (Contributed by NM, 25-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
cvgcmpce.1 𝑍 = (ℤ𝑀)
cvgcmpce.2 (𝜑𝑁𝑍)
cvgcmpce.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmpce.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
cvgcmpce.5 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
cvgcmpce.6 (𝜑𝐶 ∈ ℝ)
cvgcmpce.7 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐺𝑘)) ≤ (𝐶 · (𝐹𝑘)))
Assertion
Ref Expression
cvgcmpce (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘   𝑘,𝐹   𝑘,𝐺   𝑘,𝑁   𝑘,𝑍   𝑘,𝑀   𝜑,𝑘

Proof of Theorem cvgcmpce
Dummy variables 𝑚 𝑗 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvgcmpce.1 . 2 𝑍 = (ℤ𝑀)
2 cvgcmpce.2 . . . . . 6 (𝜑𝑁𝑍)
32, 1eleqtrdi 2925 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 12251 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . . . 4 (𝜑𝑀 ∈ ℤ)
6 cvgcmpce.4 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)
71, 5, 6serf 13401 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℂ)
87ffvelrnda 6853 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
9 fveq2 6672 . . . . . . . . 9 (𝑚 = 𝑘 → (𝐹𝑚) = (𝐹𝑘))
109oveq2d 7174 . . . . . . . 8 (𝑚 = 𝑘 → (𝐶 · (𝐹𝑚)) = (𝐶 · (𝐹𝑘)))
11 eqid 2823 . . . . . . . 8 (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚))) = (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))
12 ovex 7191 . . . . . . . 8 (𝐶 · (𝐹𝑘)) ∈ V
1310, 11, 12fvmpt 6770 . . . . . . 7 (𝑘𝑍 → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
1413adantl 484 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
15 cvgcmpce.6 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
1615adantr 483 . . . . . . 7 ((𝜑𝑘𝑍) → 𝐶 ∈ ℝ)
17 cvgcmpce.3 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
1816, 17remulcld 10673 . . . . . 6 ((𝜑𝑘𝑍) → (𝐶 · (𝐹𝑘)) ∈ ℝ)
1914, 18eqeltrd 2915 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) ∈ ℝ)
20 2fveq3 6677 . . . . . . . 8 (𝑚 = 𝑘 → (abs‘(𝐺𝑚)) = (abs‘(𝐺𝑘)))
21 eqid 2823 . . . . . . . 8 (𝑚𝑍 ↦ (abs‘(𝐺𝑚))) = (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))
22 fvex 6685 . . . . . . . 8 (abs‘(𝐺𝑘)) ∈ V
2320, 21, 22fvmpt 6770 . . . . . . 7 (𝑘𝑍 → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
2423adantl 484 . . . . . 6 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
256abscld 14798 . . . . . 6 ((𝜑𝑘𝑍) → (abs‘(𝐺𝑘)) ∈ ℝ)
2624, 25eqeltrd 2915 . . . . 5 ((𝜑𝑘𝑍) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) ∈ ℝ)
2715recnd 10671 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
28 cvgcmpce.5 . . . . . . . 8 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
29 climdm 14913 . . . . . . . 8 (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
3028, 29sylib 220 . . . . . . 7 (𝜑 → seq𝑀( + , 𝐹) ⇝ ( ⇝ ‘seq𝑀( + , 𝐹)))
3117recnd 10671 . . . . . . 7 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
321, 5, 27, 30, 31, 14isermulc2 15016 . . . . . 6 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹))))
33 climrel 14851 . . . . . . 7 Rel ⇝
3433releldmi 5820 . . . . . 6 (seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ⇝ (𝐶 · ( ⇝ ‘seq𝑀( + , 𝐹))) → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ∈ dom ⇝ )
3532, 34syl 17 . . . . 5 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))) ∈ dom ⇝ )
361uztrn2 12265 . . . . . . 7 ((𝑁𝑍𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
372, 36sylan 582 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → 𝑘𝑍)
386absge0d 14806 . . . . . . 7 ((𝜑𝑘𝑍) → 0 ≤ (abs‘(𝐺𝑘)))
3938, 24breqtrrd 5096 . . . . . 6 ((𝜑𝑘𝑍) → 0 ≤ ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘))
4037, 39syldan 593 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → 0 ≤ ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘))
41 cvgcmpce.7 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → (abs‘(𝐺𝑘)) ≤ (𝐶 · (𝐹𝑘)))
4237, 23syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
4337, 13syl 17 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘) = (𝐶 · (𝐹𝑘)))
4441, 42, 433brtr4d 5100 . . . . 5 ((𝜑𝑘 ∈ (ℤ𝑁)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) ≤ ((𝑚𝑍 ↦ (𝐶 · (𝐹𝑚)))‘𝑘))
451, 2, 19, 26, 35, 40, 44cvgcmp 15173 . . . 4 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))) ∈ dom ⇝ )
461climcau 15029 . . . 4 ((𝑀 ∈ ℤ ∧ seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))) ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥)
475, 45, 46syl2anc 586 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥)
481, 5, 26serfre 13402 . . . . . . . . . . . . 13 (𝜑 → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))):𝑍⟶ℝ)
4948ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚)))):𝑍⟶ℝ)
501uztrn2 12265 . . . . . . . . . . . . 13 ((𝑗𝑍𝑛 ∈ (ℤ𝑗)) → 𝑛𝑍)
5150adantl 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛𝑍)
5249, 51ffvelrnd 6854 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) ∈ ℝ)
53 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗𝑍)
5449, 53ffvelrnd 6854 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗) ∈ ℝ)
5552, 54resubcld 11070 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∈ ℝ)
56 0red 10646 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ∈ ℝ)
577ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → seq𝑀( + , 𝐺):𝑍⟶ℂ)
5857, 51ffvelrnd 6854 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℂ)
5957, 53ffvelrnd 6854 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (seq𝑀( + , 𝐺)‘𝑗) ∈ ℂ)
6058, 59subcld 10999 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) ∈ ℂ)
6160abscld 14798 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ)
6260absge0d 14806 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))))
63 fzfid 13344 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑛) ∈ Fin)
64 difss 4110 . . . . . . . . . . . . . 14 ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛)
65 ssfi 8740 . . . . . . . . . . . . . 14 (((𝑀...𝑛) ∈ Fin ∧ ((𝑀...𝑛) ∖ (𝑀...𝑗)) ⊆ (𝑀...𝑛)) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin)
6663, 64, 65sylancl 588 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑛) ∖ (𝑀...𝑗)) ∈ Fin)
67 eldifi 4105 . . . . . . . . . . . . . 14 (𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗)) → 𝑘 ∈ (𝑀...𝑛))
68 simpll 765 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝜑)
69 elfzuz 12907 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
7069, 1eleqtrrdi 2926 . . . . . . . . . . . . . . 15 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
7168, 70, 6syl2an 597 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℂ)
7267, 71sylan2 594 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (𝐺𝑘) ∈ ℂ)
7366, 72fsumabs 15158 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)) ≤ Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
74 eqidd 2824 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) = (𝐺𝑘))
7551, 1eleqtrdi 2925 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑛 ∈ (ℤ𝑀))
7674, 75, 71fsumser 15089 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) = (seq𝑀( + , 𝐺)‘𝑛))
77 eqidd 2824 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) = (𝐺𝑘))
7853, 1eleqtrdi 2925 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑗 ∈ (ℤ𝑀))
79 elfzuz 12907 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ (𝑀...𝑗) → 𝑘 ∈ (ℤ𝑀))
8079, 1eleqtrrdi 2926 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (𝑀...𝑗) → 𝑘𝑍)
8168, 80, 6syl2an 597 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (𝐺𝑘) ∈ ℂ)
8277, 78, 81fsumser 15089 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) = (seq𝑀( + , 𝐺)‘𝑗))
8376, 82oveq12d 7176 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘)) = ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)))
84 fzfid 13344 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑗) ∈ Fin)
8584, 81fsumcl 15092 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) ∈ ℂ)
8666, 72fsumcl 15092 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘) ∈ ℂ)
87 disjdif 4423 . . . . . . . . . . . . . . . . 17 ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅
8887a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑗) ∩ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ∅)
89 undif2 4427 . . . . . . . . . . . . . . . . 17 ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗))) = ((𝑀...𝑗) ∪ (𝑀...𝑛))
90 fzss2 12950 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ𝑗) → (𝑀...𝑗) ⊆ (𝑀...𝑛))
9190ad2antll 727 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑗) ⊆ (𝑀...𝑛))
92 ssequn1 4158 . . . . . . . . . . . . . . . . . 18 ((𝑀...𝑗) ⊆ (𝑀...𝑛) ↔ ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛))
9391, 92sylib 220 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((𝑀...𝑗) ∪ (𝑀...𝑛)) = (𝑀...𝑛))
9489, 93syl5req 2871 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (𝑀...𝑛) = ((𝑀...𝑗) ∪ ((𝑀...𝑛) ∖ (𝑀...𝑗))))
9588, 94, 63, 71fsumsplit 15099 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) = (Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)))
9685, 86, 95mvrladdd 11055 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(𝐺𝑘) − Σ𝑘 ∈ (𝑀...𝑗)(𝐺𝑘)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘))
9783, 96eqtr3d 2860 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘))
9897fveq2d 6676 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) = (abs‘Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(𝐺𝑘)))
9970adantl 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → 𝑘𝑍)
10099, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
101 abscl 14640 . . . . . . . . . . . . . . . . 17 ((𝐺𝑘) ∈ ℂ → (abs‘(𝐺𝑘)) ∈ ℝ)
102101recnd 10671 . . . . . . . . . . . . . . . 16 ((𝐺𝑘) ∈ ℂ → (abs‘(𝐺𝑘)) ∈ ℂ)
10371, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑛)) → (abs‘(𝐺𝑘)) ∈ ℂ)
104100, 75, 103fsumser 15089 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) = (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛))
10580adantl 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → 𝑘𝑍)
106105, 23syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → ((𝑚𝑍 ↦ (abs‘(𝐺𝑚)))‘𝑘) = (abs‘(𝐺𝑘)))
10781, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ (𝑀...𝑗)) → (abs‘(𝐺𝑘)) ∈ ℂ)
108106, 78, 107fsumser 15089 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) = (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))
109104, 108oveq12d 7176 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘))) = ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11084, 107fsumcl 15092 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) ∈ ℂ)
11172, 102syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) ∧ 𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))) → (abs‘(𝐺𝑘)) ∈ ℂ)
11266, 111fsumcl 15092 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)) ∈ ℂ)
11388, 94, 63, 103fsumsplit 15099 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) = (Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘)) + Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘))))
114110, 112, 113mvrladdd 11055 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (Σ𝑘 ∈ (𝑀...𝑛)(abs‘(𝐺𝑘)) − Σ𝑘 ∈ (𝑀...𝑗)(abs‘(𝐺𝑘))) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
115109, 114eqtr3d 2860 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) = Σ𝑘 ∈ ((𝑀...𝑛) ∖ (𝑀...𝑗))(abs‘(𝐺𝑘)))
11673, 98, 1153brtr4d 5100 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11756, 61, 55, 62, 116letrd 10799 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 0 ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
11855, 117absidd 14784 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) = ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)))
119118breq1d 5078 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 ↔ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥))
120 rpre 12400 . . . . . . . . . . 11 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
121120ad2antlr 725 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → 𝑥 ∈ ℝ)
122 lelttr 10733 . . . . . . . . . 10 (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ∈ ℝ ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
12361, 55, 121, 122syl3anc 1367 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) ≤ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) ∧ ((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥) → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
124116, 123mpand 693 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → (((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗)) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
125119, 124sylbid 242 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑗𝑍𝑛 ∈ (ℤ𝑗))) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
126125anassrs 470 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) ∧ 𝑛 ∈ (ℤ𝑗)) → ((abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → (abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
127126ralimdva 3179 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗𝑍) → (∀𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∀𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
128127reximdva 3276 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∃𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
129128ralimdva 3179 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑛) − (seq𝑀( + , (𝑚𝑍 ↦ (abs‘(𝐺𝑚))))‘𝑗))) < 𝑥 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥))
13047, 129mpd 15 . 2 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑛 ∈ (ℤ𝑗)(abs‘((seq𝑀( + , 𝐺)‘𝑛) − (seq𝑀( + , 𝐺)‘𝑗))) < 𝑥)
131 seqex 13374 . . 3 seq𝑀( + , 𝐺) ∈ V
132131a1i 11 . 2 (𝜑 → seq𝑀( + , 𝐺) ∈ V)
1331, 8, 130, 132caucvg 15037 1 (𝜑 → seq𝑀( + , 𝐺) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  Fincfn 8511  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872  cz 11984  cuz 12246  +crp 12392  ...cfz 12895  seqcseq 13372  abscabs 14595  cli 14843  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045
This theorem is referenced by:  abscvgcvg  15176  geomulcvg  15234  cvgrat  15241  radcnvlem1  25003  radcnvlem2  25004  dvradcnv  25011  abelthlem5  25025  abelthlem7  25028  logtayllem  25244  binomcxplemnn0  40688
  Copyright terms: Public domain W3C validator