MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvgcmpub Structured version   Visualization version   GIF version

Theorem cvgcmpub 15166
Description: An upper bound for the limit of a real infinite series. This theorem can also be used to compare two infinite series. (Contributed by Mario Carneiro, 24-Mar-2014.)
Hypotheses
Ref Expression
cvgcmp.1 𝑍 = (ℤ𝑀)
cvgcmp.2 (𝜑𝑁𝑍)
cvgcmp.3 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
cvgcmp.4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
cvgcmpub.5 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
cvgcmpub.6 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
cvgcmpub.7 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
Assertion
Ref Expression
cvgcmpub (𝜑𝐵𝐴)
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁   𝑘,𝑍
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem cvgcmpub
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 cvgcmp.1 . 2 𝑍 = (ℤ𝑀)
2 cvgcmp.2 . . . 4 (𝜑𝑁𝑍)
32, 1eleqtrdi 2923 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
4 eluzel2 12242 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
53, 4syl 17 . 2 (𝜑𝑀 ∈ ℤ)
6 cvgcmpub.6 . 2 (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)
7 cvgcmpub.5 . 2 (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)
8 cvgcmp.4 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)
91, 5, 8serfre 13393 . . 3 (𝜑 → seq𝑀( + , 𝐺):𝑍⟶ℝ)
109ffvelrnda 6845 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ∈ ℝ)
11 cvgcmp.3 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
121, 5, 11serfre 13393 . . 3 (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℝ)
1312ffvelrnda 6845 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐹)‘𝑛) ∈ ℝ)
14 simpr 487 . . . 4 ((𝜑𝑛𝑍) → 𝑛𝑍)
1514, 1eleqtrdi 2923 . . 3 ((𝜑𝑛𝑍) → 𝑛 ∈ (ℤ𝑀))
16 simpl 485 . . . 4 ((𝜑𝑛𝑍) → 𝜑)
17 elfzuz 12898 . . . . 5 (𝑘 ∈ (𝑀...𝑛) → 𝑘 ∈ (ℤ𝑀))
1817, 1eleqtrrdi 2924 . . . 4 (𝑘 ∈ (𝑀...𝑛) → 𝑘𝑍)
1916, 18, 8syl2an 597 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ∈ ℝ)
2016, 18, 11syl2an 597 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐹𝑘) ∈ ℝ)
21 cvgcmpub.7 . . . 4 ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))
2216, 18, 21syl2an 597 . . 3 (((𝜑𝑛𝑍) ∧ 𝑘 ∈ (𝑀...𝑛)) → (𝐺𝑘) ≤ (𝐹𝑘))
2315, 19, 20, 22serle 13419 . 2 ((𝜑𝑛𝑍) → (seq𝑀( + , 𝐺)‘𝑛) ≤ (seq𝑀( + , 𝐹)‘𝑛))
241, 5, 6, 7, 10, 13, 23climle 14990 1 (𝜑𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  cr 10530   + caddc 10534  cle 10670  cz 11975  cuz 12237  ...cfz 12886  seqcseq 13363  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator