Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmfolem Structured version   Visualization version   GIF version

Theorem cvmfolem 30969
Description: Lemma for cvmfo 30990. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
cvmfolem.2 𝑋 = 𝐽
Assertion
Ref Expression
cvmfolem (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmfolem
Dummy variables 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmcn 30952 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹 ∈ (𝐶 Cn 𝐽))
2 cvmseu.1 . . . 4 𝐵 = 𝐶
3 cvmfolem.2 . . . 4 𝑋 = 𝐽
42, 3cnf 20960 . . 3 (𝐹 ∈ (𝐶 Cn 𝐽) → 𝐹:𝐵𝑋)
51, 4syl 17 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵𝑋)
6 cvmcov.1 . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
76, 3cvmcov 30953 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑥𝑋) → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅))
87ex 450 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅)))
9 n0 3907 . . . . . . 7 ((𝑆𝑧) ≠ ∅ ↔ ∃𝑤 𝑤 ∈ (𝑆𝑧))
106cvmsn0 30958 . . . . . . . . . . . 12 (𝑤 ∈ (𝑆𝑧) → 𝑤 ≠ ∅)
1110ad2antll 764 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → 𝑤 ≠ ∅)
12 n0 3907 . . . . . . . . . . 11 (𝑤 ≠ ∅ ↔ ∃𝑡 𝑡𝑤)
1311, 12sylib 208 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑡 𝑡𝑤)
14 simprlr 802 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤 ∈ (𝑆𝑧))
156cvmsss 30957 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑆𝑧) → 𝑤𝐶)
1614, 15syl 17 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑤𝐶)
17 simprr 795 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝑤)
1816, 17sseldd 3584 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐶)
19 elssuni 4433 . . . . . . . . . . . . . . . 16 (𝑡𝐶𝑡 𝐶)
2018, 19syl 17 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡 𝐶)
2120, 2syl6sseqr 3631 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑡𝐵)
22 simpll 789 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
236cvmsf1o 30962 . . . . . . . . . . . . . . . . 17 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑤 ∈ (𝑆𝑧) ∧ 𝑡𝑤) → (𝐹𝑡):𝑡1-1-onto𝑧)
2422, 14, 17, 23syl3anc 1323 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑡1-1-onto𝑧)
25 f1ocnv 6106 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑡1-1-onto𝑧(𝐹𝑡):𝑧1-1-onto𝑡)
26 f1of 6094 . . . . . . . . . . . . . . . 16 ((𝐹𝑡):𝑧1-1-onto𝑡(𝐹𝑡):𝑧𝑡)
2724, 25, 263syl 18 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → (𝐹𝑡):𝑧𝑡)
28 simprll 801 . . . . . . . . . . . . . . 15 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥𝑧)
2927, 28ffvelrnd 6316 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝑡)
3021, 29sseldd 3584 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘𝑥) ∈ 𝐵)
31 f1ocnvfv2 6487 . . . . . . . . . . . . . . 15 (((𝐹𝑡):𝑡1-1-onto𝑧𝑥𝑧) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
3224, 28, 31syl2anc 692 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = 𝑥)
33 fvres 6164 . . . . . . . . . . . . . . 15 (((𝐹𝑡)‘𝑥) ∈ 𝑡 → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3429, 33syl 17 . . . . . . . . . . . . . 14 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ((𝐹𝑡)‘((𝐹𝑡)‘𝑥)) = (𝐹‘((𝐹𝑡)‘𝑥)))
3532, 34eqtr3d 2657 . . . . . . . . . . . . 13 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → 𝑥 = (𝐹‘((𝐹𝑡)‘𝑥)))
36 fveq2 6148 . . . . . . . . . . . . . . 15 (𝑦 = ((𝐹𝑡)‘𝑥) → (𝐹𝑦) = (𝐹‘((𝐹𝑡)‘𝑥)))
3736eqeq2d 2631 . . . . . . . . . . . . . 14 (𝑦 = ((𝐹𝑡)‘𝑥) → (𝑥 = (𝐹𝑦) ↔ 𝑥 = (𝐹‘((𝐹𝑡)‘𝑥))))
3837rspcev 3295 . . . . . . . . . . . . 13 ((((𝐹𝑡)‘𝑥) ∈ 𝐵𝑥 = (𝐹‘((𝐹𝑡)‘𝑥))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
3930, 35, 38syl2anc 692 . . . . . . . . . . . 12 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ ((𝑥𝑧𝑤 ∈ (𝑆𝑧)) ∧ 𝑡𝑤)) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
4039expr 642 . . . . . . . . . . 11 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4140exlimdv 1858 . . . . . . . . . 10 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → (∃𝑡 𝑡𝑤 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4213, 41mpd 15 . . . . . . . . 9 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ (𝑥𝑧𝑤 ∈ (𝑆𝑧))) → ∃𝑦𝐵 𝑥 = (𝐹𝑦))
4342expr 642 . . . . . . . 8 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4443exlimdv 1858 . . . . . . 7 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → (∃𝑤 𝑤 ∈ (𝑆𝑧) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
459, 44syl5bi 232 . . . . . 6 (((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) ∧ 𝑥𝑧) → ((𝑆𝑧) ≠ ∅ → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4645expimpd 628 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ 𝑧𝐽) → ((𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4746rexlimdva 3024 . . . 4 (𝐹 ∈ (𝐶 CovMap 𝐽) → (∃𝑧𝐽 (𝑥𝑧 ∧ (𝑆𝑧) ≠ ∅) → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
488, 47syld 47 . . 3 (𝐹 ∈ (𝐶 CovMap 𝐽) → (𝑥𝑋 → ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
4948ralrimiv 2959 . 2 (𝐹 ∈ (𝐶 CovMap 𝐽) → ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦))
50 dffo3 6330 . 2 (𝐹:𝐵onto𝑋 ↔ (𝐹:𝐵𝑋 ∧ ∀𝑥𝑋𝑦𝐵 𝑥 = (𝐹𝑦)))
515, 49, 50sylanbrc 697 1 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐹:𝐵onto𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  cdif 3552  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148   cuni 4402  cmpt 4673  ccnv 5073  cres 5076  cima 5077  wf 5843  ontowfo 5845  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  t crest 16002   Cn ccn 20938  Homeochmeo 21466   CovMap ccvm 30945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-fin 7903  df-fi 8261  df-rest 16004  df-topgen 16025  df-top 20621  df-bases 20622  df-topon 20623  df-cn 20941  df-hmeo 21468  df-cvm 30946
This theorem is referenced by:  cvmfo  30990
  Copyright terms: Public domain W3C validator