Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem1 Structured version   Visualization version   GIF version

Theorem cvmlift2lem1 32544
Description: Lemma for cvmlift2 32558. (Contributed by Mario Carneiro, 1-Jun-2015.)
Assertion
Ref Expression
cvmlift2lem1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Distinct variable groups:   𝑢,𝑡,𝑥,𝑦   𝑢,𝑀,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑡)

Proof of Theorem cvmlift2lem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 biimp 217 . . . . . 6 (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
2 iitop 23482 . . . . . . . . . . 11 II ∈ Top
3 iiuni 23483 . . . . . . . . . . . 12 (0[,]1) = II
43neii1 21708 . . . . . . . . . . 11 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
52, 4mpan 688 . . . . . . . . . 10 (𝑢 ∈ ((nei‘II)‘{𝑦}) → 𝑢 ⊆ (0[,]1))
65adantl 484 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑢 ⊆ (0[,]1))
7 xpss1 5568 . . . . . . . . 9 (𝑢 ⊆ (0[,]1) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
86, 7syl 17 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ ((0[,]1) × {𝑥}))
9 simpl 485 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((0[,]1) × {𝑥}) ⊆ 𝑀)
108, 9sstrd 3976 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (𝑢 × {𝑥}) ⊆ 𝑀)
11 ssnei 21712 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
122, 11mpan 688 . . . . . . . . . . 11 (𝑢 ∈ ((nei‘II)‘{𝑦}) → {𝑦} ⊆ 𝑢)
1312adantl 484 . . . . . . . . . 10 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → {𝑦} ⊆ 𝑢)
14 vex 3497 . . . . . . . . . . 11 𝑦 ∈ V
1514snss 4711 . . . . . . . . . 10 (𝑦𝑢 ↔ {𝑦} ⊆ 𝑢)
1613, 15sylibr 236 . . . . . . . . 9 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → 𝑦𝑢)
17 vsnid 4595 . . . . . . . . 9 𝑡 ∈ {𝑡}
18 opelxpi 5586 . . . . . . . . 9 ((𝑦𝑢𝑡 ∈ {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
1916, 17, 18sylancl 588 . . . . . . . 8 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}))
20 ssel 3960 . . . . . . . 8 ((𝑢 × {𝑡}) ⊆ 𝑀 → (⟨𝑦, 𝑡⟩ ∈ (𝑢 × {𝑡}) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2119, 20syl5com 31 . . . . . . 7 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → ((𝑢 × {𝑡}) ⊆ 𝑀 → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2210, 21embantd 59 . . . . . 6 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
231, 22syl5 34 . . . . 5 ((((0[,]1) × {𝑥}) ⊆ 𝑀𝑢 ∈ ((nei‘II)‘{𝑦})) → (((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2423rexlimdva 3284 . . . 4 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ⟨𝑦, 𝑡⟩ ∈ 𝑀))
2524ralimdv 3178 . . 3 (((0[,]1) × {𝑥}) ⊆ 𝑀 → (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
2625com12 32 . 2 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀))
27 dfss3 3955 . . 3 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀)
28 eleq1 2900 . . . 4 (𝑧 = ⟨𝑦, 𝑢⟩ → (𝑧𝑀 ↔ ⟨𝑦, 𝑢⟩ ∈ 𝑀))
2928ralxp 5706 . . 3 (∀𝑧 ∈ ((0[,]1) × {𝑡})𝑧𝑀 ↔ ∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀)
30 vex 3497 . . . . 5 𝑡 ∈ V
31 opeq2 4797 . . . . . 6 (𝑢 = 𝑡 → ⟨𝑦, 𝑢⟩ = ⟨𝑦, 𝑡⟩)
3231eleq1d 2897 . . . . 5 (𝑢 = 𝑡 → (⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀))
3330, 32ralsn 4612 . . . 4 (∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ⟨𝑦, 𝑡⟩ ∈ 𝑀)
3433ralbii 3165 . . 3 (∀𝑦 ∈ (0[,]1)∀𝑢 ∈ {𝑡}⟨𝑦, 𝑢⟩ ∈ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3527, 29, 343bitri 299 . 2 (((0[,]1) × {𝑡}) ⊆ 𝑀 ↔ ∀𝑦 ∈ (0[,]1)⟨𝑦, 𝑡⟩ ∈ 𝑀)
3626, 35syl6ibr 254 1 (∀𝑦 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑦})((𝑢 × {𝑥}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑥}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wral 3138  wrex 3139  wss 3935  {csn 4560  cop 4566   × cxp 5547  cfv 6349  (class class class)co 7150  0cc0 10531  1c1 10532  [,]cicc 12735  Topctop 21495  neicnei 21699  IIcii 23477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-topgen 16711  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-top 21496  df-topon 21513  df-bases 21548  df-nei 21700  df-ii 23479
This theorem is referenced by:  cvmlift2lem12  32556
  Copyright terms: Public domain W3C validator