Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem10 Structured version   Visualization version   GIF version

Theorem cvmlift2lem10 31593
Description: Lemma for cvmlift2 31597. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem10.1 (𝜑𝑋 ∈ (0[,]1))
cvmlift2lem10.2 (𝜑𝑌 ∈ (0[,]1))
Assertion
Ref Expression
cvmlift2lem10 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐽,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑐,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐻,𝑐,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝐵,𝑐,𝑑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐾,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑤,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑋(𝑠)   𝑌(𝑠)

Proof of Theorem cvmlift2lem10
Dummy variables 𝑏 𝑚 𝑎 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmlift2.g . . . . 5 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
3 iitop 22876 . . . . . . 7 II ∈ Top
4 iiuni 22877 . . . . . . 7 (0[,]1) = II
53, 3, 4, 4txunii 21590 . . . . . 6 ((0[,]1) × (0[,]1)) = (II ×t II)
6 eqid 2752 . . . . . 6 𝐽 = 𝐽
75, 6cnf 21244 . . . . 5 (𝐺 ∈ ((II ×t II) Cn 𝐽) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
82, 7syl 17 . . . 4 (𝜑𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
9 cvmlift2lem10.1 . . . . 5 (𝜑𝑋 ∈ (0[,]1))
10 cvmlift2lem10.2 . . . . 5 (𝜑𝑌 ∈ (0[,]1))
119, 10opelxpd 5298 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
128, 11ffvelrnd 6515 . . 3 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽)
13 cvmlift2lem10.s . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
1413, 6cvmcov 31544 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽) → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
151, 12, 14syl2anc 696 . 2 (𝜑 → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
16 n0 4066 . . . . 5 ((𝑆𝑚) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆𝑚))
17 eleq1 2819 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏)))
18 opelxp 5295 . . . . . . . . . . . . 13 (⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏))
1917, 18syl6bb 276 . . . . . . . . . . . 12 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏)))
2019anbi1d 743 . . . . . . . . . . 11 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
21202rexbidv 3187 . . . . . . . . . 10 (𝑧 = ⟨𝑋, 𝑌⟩ → (∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
222adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
2313cvmsrcl 31545 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑆𝑚) → 𝑚𝐽)
2423ad2antll 767 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝑚𝐽)
25 cnima 21263 . . . . . . . . . . . 12 ((𝐺 ∈ ((II ×t II) Cn 𝐽) ∧ 𝑚𝐽) → (𝐺𝑚) ∈ (II ×t II))
2622, 24, 25syl2anc 696 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺𝑚) ∈ (II ×t II))
27 eltx 21565 . . . . . . . . . . . 12 ((II ∈ Top ∧ II ∈ Top) → ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
283, 3, 27mp2an 710 . . . . . . . . . . 11 ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
2926, 28sylib 208 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
3011adantr 472 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
31 simprl 811 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
328adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
33 ffn 6198 . . . . . . . . . . . 12 (𝐺:((0[,]1) × (0[,]1))⟶ 𝐽𝐺 Fn ((0[,]1) × (0[,]1)))
34 elpreima 6492 . . . . . . . . . . . 12 (𝐺 Fn ((0[,]1) × (0[,]1)) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3532, 33, 343syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
3630, 31, 35mpbir2and 995 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚))
3721, 29, 36rspcdva 3447 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
38 iillysconn 31534 . . . . . . . . . . . . 13 II ∈ Locally SConn
39 simplrl 819 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑎 ∈ II)
40 simprll 821 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑋𝑎)
41 llyi 21471 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋𝑎) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
4238, 39, 40, 41mp3an2i 1570 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
43 simplrr 820 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑏 ∈ II)
44 simprlr 822 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑌𝑏)
45 llyi 21471 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌𝑏) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
4638, 43, 44, 45mp3an2i 1570 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
47 reeanv 3237 . . . . . . . . . . . . 13 (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) ↔ (∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)))
48 simpl2 1227 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢)
4948a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢))
50 simpr2 1233 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣)
5150a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣))
52 simprl1 1264 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑢𝑎)
53 simprr1 1270 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑣𝑏)
54 xpss12 5273 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑎𝑣𝑏) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
5552, 53, 54syl2anc 696 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
56 simplrr 820 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑎 × 𝑏) ⊆ (𝐺𝑚))
5755, 56sstrd 3746 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
5857ex 449 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑢 × 𝑣) ⊆ (𝐺𝑚)))
5949, 51, 583jcad 1123 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚))))
60 simp3 1132 . . . . . . . . . . . . . . . . 17 ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) → (II ↾t 𝑢) ∈ SConn)
61 simp3 1132 . . . . . . . . . . . . . . . . 17 ((𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn) → (II ↾t 𝑣) ∈ SConn)
6260, 61anim12i 591 . . . . . . . . . . . . . . . 16 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))
6359, 62jca2 557 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6463reximdv 3146 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6564reximdv 3146 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6647, 65syl5bir 233 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ((∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6742, 46, 66mp2and 717 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
6867ex 449 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) → (((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6968rexlimdvva 3168 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7037, 69mpd 15 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
71 simp3l1 1360 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑋𝑢)
72 simp3l2 1361 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑌𝑣)
73 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
74 simpl1l 1276 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝜑)
7574, 1syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
7674, 2syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
77 cvmlift2.p . . . . . . . . . . . . . 14 (𝜑𝑃𝐵)
7874, 77syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑃𝐵)
79 cvmlift2.i . . . . . . . . . . . . . 14 (𝜑 → (𝐹𝑃) = (0𝐺0))
8074, 79syl 17 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐹𝑃) = (0𝐺0))
81 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
82 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
83 df-ov 6808 . . . . . . . . . . . . . 14 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
84 simpl1r 1278 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚)))
8584simpld 477 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
8683, 85syl5eqel 2835 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑋𝐺𝑌) ∈ 𝑚)
8784simprd 482 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑡 ∈ (𝑆𝑚))
88 simpl2l 1280 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑢 ∈ II)
89 simpl2r 1282 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑣 ∈ II)
90 simp3rl 1310 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑢) ∈ SConn)
9190adantr 472 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ SConn)
92 sconnpconn 31508 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ SConn → (II ↾t 𝑢) ∈ PConn)
93 pconnconn 31512 . . . . . . . . . . . . . 14 ((II ↾t 𝑢) ∈ PConn → (II ↾t 𝑢) ∈ Conn)
9491, 92, 933syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ Conn)
95 simp3rr 1311 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑣) ∈ SConn)
9695adantr 472 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ SConn)
97 sconnpconn 31508 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ SConn → (II ↾t 𝑣) ∈ PConn)
98 pconnconn 31512 . . . . . . . . . . . . . 14 ((II ↾t 𝑣) ∈ PConn → (II ↾t 𝑣) ∈ Conn)
9996, 97, 983syl 18 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ Conn)
10071adantr 472 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑋𝑢)
10172adantr 472 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑌𝑣)
102 simp3l3 1362 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
103102adantr 472 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
104 simprl 811 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑤𝑣)
105 simprr 813 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
106 eqid 2752 . . . . . . . . . . . . 13 (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏) = (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏)
10773, 75, 76, 78, 80, 81, 82, 13, 86, 87, 88, 89, 94, 99, 100, 101, 103, 104, 105, 106cvmlift2lem9 31592 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))
108107rexlimdvaa 3162 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
10971, 72, 1083jca 1122 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
1101093expia 1114 . . . . . . . . 9 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
111110reximdvva 3149 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11270, 111mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
113112expr 644 . . . . . 6 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
114113exlimdv 2002 . . . . 5 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (∃𝑡 𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11516, 114syl5bi 232 . . . 4 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → ((𝑆𝑚) ≠ ∅ → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
116115expimpd 630 . . 3 (𝜑 → (((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
117116rexlimdvw 3164 . 2 (𝜑 → (∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11815, 117mpd 15 1 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1624  wex 1845  wcel 2131  wne 2924  wral 3042  wrex 3043  {crab 3046  cdif 3704  cin 3706  wss 3707  c0 4050  𝒫 cpw 4294  {csn 4313  cop 4319   cuni 4580  cmpt 4873   × cxp 5256  ccnv 5257  cres 5260  cima 5261  ccom 5262   Fn wfn 6036  wf 6037  cfv 6041  crio 6765  (class class class)co 6805  cmpt2 6807  0cc0 10120  1c1 10121  [,]cicc 12363  t crest 16275  Topctop 20892   Cn ccn 21222  Conncconn 21408  Locally clly 21461   ×t ctx 21557  Homeochmeo 21750  IIcii 22871  PConncpconn 31500  SConncsconn 31501   CovMap ccvm 31536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-fal 1630  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-iin 4667  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-se 5218  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-isom 6050  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-of 7054  df-om 7223  df-1st 7325  df-2nd 7326  df-supp 7456  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-2o 7722  df-oadd 7725  df-er 7903  df-ec 7905  df-map 8017  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8433  df-fi 8474  df-sup 8505  df-inf 8506  df-oi 8572  df-card 8947  df-cda 9174  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-ioo 12364  df-ico 12366  df-icc 12367  df-fz 12512  df-fzo 12652  df-fl 12779  df-seq 12988  df-exp 13047  df-hash 13304  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-clim 14410  df-sum 14608  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-hom 16160  df-cco 16161  df-rest 16277  df-topn 16278  df-0g 16296  df-gsum 16297  df-topgen 16298  df-pt 16299  df-prds 16302  df-xrs 16356  df-qtop 16361  df-imas 16362  df-xps 16364  df-mre 16440  df-mrc 16441  df-acs 16443  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-submnd 17529  df-mulg 17734  df-cntz 17942  df-cmn 18387  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-cnfld 19941  df-top 20893  df-topon 20910  df-topsp 20931  df-bases 20944  df-cld 21017  df-ntr 21018  df-cls 21019  df-nei 21096  df-cn 21225  df-cnp 21226  df-cmp 21384  df-conn 21409  df-lly 21463  df-nlly 21464  df-tx 21559  df-hmeo 21752  df-xms 22318  df-ms 22319  df-tms 22320  df-ii 22873  df-htpy 22962  df-phtpy 22963  df-phtpc 22984  df-pconn 31502  df-sconn 31503  df-cvm 31537
This theorem is referenced by:  cvmlift2lem12  31595
  Copyright terms: Public domain W3C validator