Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem10 Structured version   Visualization version   GIF version

Theorem cvmlift2lem10 30999
Description: Lemma for cvmlift2 31003. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2lem10.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
cvmlift2lem10.1 (𝜑𝑋 ∈ (0[,]1))
cvmlift2lem10.2 (𝜑𝑌 ∈ (0[,]1))
Assertion
Ref Expression
cvmlift2lem10 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑆,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐽,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑐,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐻,𝑐,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑋,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐶,𝑐,𝑑,𝑓,𝑘,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑘,𝑢,𝑣,𝑥,𝑦,𝑧   𝐵,𝑐,𝑑,𝑣,𝑤,𝑥,𝑦,𝑧   𝑌,𝑐,𝑑,𝑓,𝑘,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐾,𝑐,𝑑,𝑓,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑘,𝑠,𝑐,𝑑)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑤,𝑠,𝑐,𝑑)   𝑆(𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠,𝑑)   𝐻(𝑘,𝑠,𝑑)   𝐾(𝑘,𝑠)   𝑋(𝑠)   𝑌(𝑠)

Proof of Theorem cvmlift2lem10
Dummy variables 𝑏 𝑚 𝑎 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
2 cvmlift2.g . . . . 5 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
3 iitop 22591 . . . . . . 7 II ∈ Top
4 iiuni 22592 . . . . . . 7 (0[,]1) = II
53, 3, 4, 4txunii 21306 . . . . . 6 ((0[,]1) × (0[,]1)) = (II ×t II)
6 eqid 2621 . . . . . 6 𝐽 = 𝐽
75, 6cnf 20960 . . . . 5 (𝐺 ∈ ((II ×t II) Cn 𝐽) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
82, 7syl 17 . . . 4 (𝜑𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
9 cvmlift2lem10.1 . . . . 5 (𝜑𝑋 ∈ (0[,]1))
10 cvmlift2lem10.2 . . . . 5 (𝜑𝑌 ∈ (0[,]1))
11 opelxpi 5108 . . . . 5 ((𝑋 ∈ (0[,]1) ∧ 𝑌 ∈ (0[,]1)) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
129, 10, 11syl2anc 692 . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
138, 12ffvelrnd 6316 . . 3 (𝜑 → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽)
14 cvmlift2lem10.s . . . 4 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
1514, 6cvmcov 30950 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝐽) → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
161, 13, 15syl2anc 692 . 2 (𝜑 → ∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅))
17 n0 3907 . . . . 5 ((𝑆𝑚) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆𝑚))
1812adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)))
19 simprl 793 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
208adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺:((0[,]1) × (0[,]1))⟶ 𝐽)
21 ffn 6002 . . . . . . . . . . . 12 (𝐺:((0[,]1) × (0[,]1))⟶ 𝐽𝐺 Fn ((0[,]1) × (0[,]1)))
22 elpreima 6293 . . . . . . . . . . . 12 (𝐺 Fn ((0[,]1) × (0[,]1)) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
2320, 21, 223syl 18 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) ↔ (⟨𝑋, 𝑌⟩ ∈ ((0[,]1) × (0[,]1)) ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)))
2418, 19, 23mpbir2and 956 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚))
252adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
2614cvmsrcl 30951 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑆𝑚) → 𝑚𝐽)
2726ad2antll 764 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → 𝑚𝐽)
28 cnima 20979 . . . . . . . . . . . 12 ((𝐺 ∈ ((II ×t II) Cn 𝐽) ∧ 𝑚𝐽) → (𝐺𝑚) ∈ (II ×t II))
2925, 27, 28syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (𝐺𝑚) ∈ (II ×t II))
30 eltx 21281 . . . . . . . . . . . 12 ((II ∈ Top ∧ II ∈ Top) → ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
313, 3, 30mp2an 707 . . . . . . . . . . 11 ((𝐺𝑚) ∈ (II ×t II) ↔ ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
3229, 31sylib 208 . . . . . . . . . 10 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
33 eleq1 2686 . . . . . . . . . . . . . 14 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ ⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏)))
34 opelxp 5106 . . . . . . . . . . . . . 14 (⟨𝑋, 𝑌⟩ ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏))
3533, 34syl6bb 276 . . . . . . . . . . . . 13 (𝑧 = ⟨𝑋, 𝑌⟩ → (𝑧 ∈ (𝑎 × 𝑏) ↔ (𝑋𝑎𝑌𝑏)))
3635anbi1d 740 . . . . . . . . . . . 12 (𝑧 = ⟨𝑋, 𝑌⟩ → ((𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
37362rexbidv 3050 . . . . . . . . . . 11 (𝑧 = ⟨𝑋, 𝑌⟩ → (∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) ↔ ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
3837rspcv 3291 . . . . . . . . . 10 (⟨𝑋, 𝑌⟩ ∈ (𝐺𝑚) → (∀𝑧 ∈ (𝐺𝑚)∃𝑎 ∈ II ∃𝑏 ∈ II (𝑧 ∈ (𝑎 × 𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))))
3924, 32, 38sylc 65 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)))
40 iillysconn 30940 . . . . . . . . . . . . . 14 II ∈ Locally SConn
4140a1i 11 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → II ∈ Locally SConn)
42 simplrl 799 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑎 ∈ II)
43 simprll 801 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑋𝑎)
44 llyi 21187 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑎 ∈ II ∧ 𝑋𝑎) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
4541, 42, 43, 44syl3anc 1323 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn))
46 simplrr 800 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑏 ∈ II)
47 simprlr 802 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → 𝑌𝑏)
48 llyi 21187 . . . . . . . . . . . . 13 ((II ∈ Locally SConn ∧ 𝑏 ∈ II ∧ 𝑌𝑏) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
4941, 46, 47, 48syl3anc 1323 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))
50 reeanv 3097 . . . . . . . . . . . . 13 (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) ↔ (∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)))
51 simpl2 1063 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢)
5251a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑋𝑢))
53 simpr2 1066 . . . . . . . . . . . . . . . . . 18 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣)
5453a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → 𝑌𝑣))
55 simprl1 1104 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑢𝑎)
56 simprr1 1107 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑣𝑏)
57 xpss12 5186 . . . . . . . . . . . . . . . . . . . 20 ((𝑢𝑎𝑣𝑏) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
5855, 56, 57syl2anc 692 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝑎 × 𝑏))
59 simplrr 800 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑎 × 𝑏) ⊆ (𝐺𝑚))
6058, 59sstrd 3593 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) ∧ ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
6160ex 450 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑢 × 𝑣) ⊆ (𝐺𝑚)))
6252, 54, 613jcad 1241 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚))))
63 simp3 1061 . . . . . . . . . . . . . . . . . 18 ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) → (II ↾t 𝑢) ∈ SConn)
64 simp3 1061 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn) → (II ↾t 𝑣) ∈ SConn)
6563, 64anim12i 589 . . . . . . . . . . . . . . . . 17 (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))
6665a1i 11 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
6762, 66jcad 555 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6867reximdv 3010 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
6968reximdv 3010 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7050, 69syl5bir 233 . . . . . . . . . . . 12 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ((∃𝑢 ∈ II (𝑢𝑎𝑋𝑢 ∧ (II ↾t 𝑢) ∈ SConn) ∧ ∃𝑣 ∈ II (𝑣𝑏𝑌𝑣 ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7145, 49, 70mp2and 714 . . . . . . . . . . 11 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) ∧ ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
7271ex 450 . . . . . . . . . 10 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑎 ∈ II ∧ 𝑏 ∈ II)) → (((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7372rexlimdvva 3031 . . . . . . . . 9 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑎 ∈ II ∃𝑏 ∈ II ((𝑋𝑎𝑌𝑏) ∧ (𝑎 × 𝑏) ⊆ (𝐺𝑚)) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))))
7439, 73mpd 15 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)))
75 simp3l1 1164 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑋𝑢)
76 simp3l2 1165 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → 𝑌𝑣)
77 cvmlift2.b . . . . . . . . . . . . . . 15 𝐵 = 𝐶
78 simpl1l 1110 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝜑)
7978, 1syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
8078, 2syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
81 cvmlift2.p . . . . . . . . . . . . . . . 16 (𝜑𝑃𝐵)
8278, 81syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑃𝐵)
83 cvmlift2.i . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹𝑃) = (0𝐺0))
8478, 83syl 17 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐹𝑃) = (0𝐺0))
85 cvmlift2.h . . . . . . . . . . . . . . 15 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
86 cvmlift2.k . . . . . . . . . . . . . . 15 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
87 df-ov 6607 . . . . . . . . . . . . . . . 16 (𝑋𝐺𝑌) = (𝐺‘⟨𝑋, 𝑌⟩)
88 simpl1r 1111 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚)))
8988simpld 475 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚)
9087, 89syl5eqel 2702 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑋𝐺𝑌) ∈ 𝑚)
9188simprd 479 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑡 ∈ (𝑆𝑚))
92 simpl2l 1112 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑢 ∈ II)
93 simpl2r 1113 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑣 ∈ II)
94 simp3rl 1132 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑢) ∈ SConn)
9594adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ SConn)
96 sconnpconn 30914 . . . . . . . . . . . . . . . 16 ((II ↾t 𝑢) ∈ SConn → (II ↾t 𝑢) ∈ PConn)
97 pconnconn 30918 . . . . . . . . . . . . . . . 16 ((II ↾t 𝑢) ∈ PConn → (II ↾t 𝑢) ∈ Conn)
9895, 96, 973syl 18 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑢) ∈ Conn)
99 simp3rr 1133 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (II ↾t 𝑣) ∈ SConn)
10099adantr 481 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ SConn)
101 sconnpconn 30914 . . . . . . . . . . . . . . . 16 ((II ↾t 𝑣) ∈ SConn → (II ↾t 𝑣) ∈ PConn)
102 pconnconn 30918 . . . . . . . . . . . . . . . 16 ((II ↾t 𝑣) ∈ PConn → (II ↾t 𝑣) ∈ Conn)
103100, 101, 1023syl 18 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (II ↾t 𝑣) ∈ Conn)
10475adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑋𝑢)
10576adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑌𝑣)
106 simp3l3 1166 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
107106adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝑢 × 𝑣) ⊆ (𝐺𝑚))
108 simprl 793 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → 𝑤𝑣)
109 simprr 795 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
110 eqid 2621 . . . . . . . . . . . . . . 15 (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏) = (𝑏𝑡 (𝑋𝐾𝑌) ∈ 𝑏)
11177, 79, 80, 82, 84, 85, 86, 14, 90, 91, 92, 93, 98, 103, 104, 105, 107, 108, 109, 110cvmlift2lem9 30998 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) ∧ (𝑤𝑣 ∧ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))
112111rexlimdvaa 3025 . . . . . . . . . . . . 13 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
11375, 76, 1123jca 1240 . . . . . . . . . . . 12 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II) ∧ ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn))) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
1141133expia 1264 . . . . . . . . . . 11 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
115114anassrs 679 . . . . . . . . . 10 ((((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ 𝑢 ∈ II) ∧ 𝑣 ∈ II) → (((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
116115reximdva 3011 . . . . . . . . 9 (((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) ∧ 𝑢 ∈ II) → (∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
117116reximdva 3011 . . . . . . . 8 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → (∃𝑢 ∈ II ∃𝑣 ∈ II ((𝑋𝑢𝑌𝑣 ∧ (𝑢 × 𝑣) ⊆ (𝐺𝑚)) ∧ ((II ↾t 𝑢) ∈ SConn ∧ (II ↾t 𝑣) ∈ SConn)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
11874, 117mpd 15 . . . . . . 7 ((𝜑 ∧ ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚𝑡 ∈ (𝑆𝑚))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
119118expr 642 . . . . . 6 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
120119exlimdv 1858 . . . . 5 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → (∃𝑡 𝑡 ∈ (𝑆𝑚) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
12117, 120syl5bi 232 . . . 4 ((𝜑 ∧ (𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚) → ((𝑆𝑚) ≠ ∅ → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
122121expimpd 628 . . 3 (𝜑 → (((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
123122rexlimdvw 3027 . 2 (𝜑 → (∃𝑚𝐽 ((𝐺‘⟨𝑋, 𝑌⟩) ∈ 𝑚 ∧ (𝑆𝑚) ≠ ∅) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))))
12416, 123mpd 15 1 (𝜑 → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑋𝑢𝑌𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  {crab 2911  cdif 3552  cin 3554  wss 3555  c0 3891  𝒫 cpw 4130  {csn 4148  cop 4154   cuni 4402  cmpt 4673   × cxp 5072  ccnv 5073  cres 5076  cima 5077  ccom 5078   Fn wfn 5842  wf 5843  cfv 5847  crio 6564  (class class class)co 6604  cmpt2 6606  0cc0 9880  1c1 9881  [,]cicc 12120  t crest 16002  Topctop 20617   Cn ccn 20938  Conncconn 21124  Locally clly 21177   ×t ctx 21273  Homeochmeo 21466  IIcii 22586  PConncpconn 30906  SConncsconn 30907   CovMap ccvm 30942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-ec 7689  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-cn 20941  df-cnp 20942  df-cmp 21100  df-conn 21125  df-lly 21179  df-nlly 21180  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-ii 22588  df-htpy 22677  df-phtpy 22678  df-phtpc 22699  df-pconn 30908  df-sconn 30909  df-cvm 30943
This theorem is referenced by:  cvmlift2lem12  31001
  Copyright terms: Public domain W3C validator