Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem11 Structured version   Visualization version   GIF version

Theorem cvmlift2lem11 31000
 Description: Lemma for cvmlift2 31003. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2lem11.1 (𝜑𝑈 ∈ II)
cvmlift2lem11.2 (𝜑𝑉 ∈ II)
cvmlift2lem11.3 (𝜑𝑌𝑉)
cvmlift2lem11.4 (𝜑𝑍𝑉)
cvmlift2lem11.5 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
Assertion
Ref Expression
cvmlift2lem11 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
Distinct variable groups:   𝑤,𝑓,𝑥,𝑦,𝑧,𝐹   𝜑,𝑓,𝑤,𝑥,𝑦,𝑧   𝑥,𝑀,𝑦,𝑧   𝑓,𝐽,𝑤,𝑥,𝑦,𝑧   𝑤,𝑈,𝑧   𝑓,𝐺,𝑤,𝑥,𝑦,𝑧   𝑤,𝑉   𝑓,𝐻,𝑤,𝑥,𝑦,𝑧   𝑧,𝑍   𝐶,𝑓,𝑤,𝑥,𝑦,𝑧   𝑃,𝑓,𝑥,𝑦,𝑧   𝑤,𝐵,𝑥,𝑦,𝑧   𝑓,𝑌,𝑤,𝑥,𝑦,𝑧   𝑓,𝐾,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑓)   𝑃(𝑤)   𝑈(𝑥,𝑦,𝑓)   𝑀(𝑤,𝑓)   𝑉(𝑥,𝑦,𝑧,𝑓)   𝑍(𝑥,𝑦,𝑤,𝑓)

Proof of Theorem cvmlift2lem11
StepHypRef Expression
1 cvmlift2lem11.1 . . . . . . 7 (𝜑𝑈 ∈ II)
21adantr 481 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ∈ II)
3 elssuni 4433 . . . . . . 7 (𝑈 ∈ II → 𝑈 II)
4 iiuni 22592 . . . . . . 7 (0[,]1) = II
53, 4syl6sseqr 3631 . . . . . 6 (𝑈 ∈ II → 𝑈 ⊆ (0[,]1))
62, 5syl 17 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑈 ⊆ (0[,]1))
7 cvmlift2lem11.4 . . . . . . . 8 (𝜑𝑍𝑉)
8 cvmlift2lem11.2 . . . . . . . 8 (𝜑𝑉 ∈ II)
9 elunii 4407 . . . . . . . . 9 ((𝑍𝑉𝑉 ∈ II) → 𝑍 II)
109, 4syl6eleqr 2709 . . . . . . . 8 ((𝑍𝑉𝑉 ∈ II) → 𝑍 ∈ (0[,]1))
117, 8, 10syl2anc 692 . . . . . . 7 (𝜑𝑍 ∈ (0[,]1))
1211adantr 481 . . . . . 6 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍 ∈ (0[,]1))
1312snssd 4309 . . . . 5 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ (0[,]1))
14 xpss12 5186 . . . . 5 ((𝑈 ⊆ (0[,]1) ∧ {𝑍} ⊆ (0[,]1)) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
156, 13, 14syl2anc 692 . . . 4 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((0[,]1) × (0[,]1)))
16 cvmlift2lem11.3 . . . . . . . . . 10 (𝜑𝑌𝑉)
1716adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌𝑉)
18 cvmlift2.b . . . . . . . . . . . . 13 𝐵 = 𝐶
19 cvmlift2.f . . . . . . . . . . . . 13 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
20 cvmlift2.g . . . . . . . . . . . . 13 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
21 cvmlift2.p . . . . . . . . . . . . 13 (𝜑𝑃𝐵)
22 cvmlift2.i . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑃) = (0𝐺0))
23 cvmlift2.h . . . . . . . . . . . . 13 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
24 cvmlift2.k . . . . . . . . . . . . 13 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
2518, 19, 20, 21, 22, 23, 24cvmlift2lem5 30994 . . . . . . . . . . . 12 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
2625adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
278adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ∈ II)
28 elssuni 4433 . . . . . . . . . . . . . . . 16 (𝑉 ∈ II → 𝑉 II)
2928, 4syl6sseqr 3631 . . . . . . . . . . . . . . 15 (𝑉 ∈ II → 𝑉 ⊆ (0[,]1))
3027, 29syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑉 ⊆ (0[,]1))
3130, 17sseldd 3584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑌 ∈ (0[,]1))
3231snssd 4309 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑌} ⊆ (0[,]1))
33 xpss12 5186 . . . . . . . . . . . 12 ((𝑈 ⊆ (0[,]1) ∧ {𝑌} ⊆ (0[,]1)) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
346, 32, 33syl2anc 692 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
3526, 34fssresd 6028 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵)
3634adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)))
37 simpr 477 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝑧 ∈ (𝑈 × {𝑌}))
38 simpr 477 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ 𝑀)
39 cvmlift2.m . . . . . . . . . . . . . . 15 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
4038, 39syl6sseq 3630 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
41 ssrab 3659 . . . . . . . . . . . . . . 15 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ ((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
4241simprbi 480 . . . . . . . . . . . . . 14 ((𝑈 × {𝑌}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4340, 42syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
4443r19.21bi 2927 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
45 iitopon 22590 . . . . . . . . . . . . . . 15 II ∈ (TopOn‘(0[,]1))
46 txtopon 21304 . . . . . . . . . . . . . . 15 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
4745, 45, 46mp2an 707 . . . . . . . . . . . . . 14 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
4847toponunii 20647 . . . . . . . . . . . . 13 ((0[,]1) × (0[,]1)) = (II ×t II)
4948cnpresti 21002 . . . . . . . . . . . 12 (((𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1)) ∧ 𝑧 ∈ (𝑈 × {𝑌}) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5036, 37, 44, 49syl3anc 1323 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑌})) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
5150ralrimiva 2960 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))
52 resttopon 20875 . . . . . . . . . . . 12 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ (𝑈 × {𝑌}) ⊆ ((0[,]1) × (0[,]1))) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
5347, 34, 52sylancr 694 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})))
54 cvmtop1 30947 . . . . . . . . . . . . . 14 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
5519, 54syl 17 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Top)
5655adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ Top)
5718toptopon 20648 . . . . . . . . . . . 12 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
5856, 57sylib 208 . . . . . . . . . . 11 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝐶 ∈ (TopOn‘𝐵))
59 cncnp 20994 . . . . . . . . . . 11 ((((II ×t II) ↾t (𝑈 × {𝑌})) ∈ (TopOn‘(𝑈 × {𝑌})) ∧ 𝐶 ∈ (TopOn‘𝐵)) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6053, 58, 59syl2anc 692 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶) ↔ ((𝐾 ↾ (𝑈 × {𝑌})):(𝑈 × {𝑌})⟶𝐵 ∧ ∀𝑧 ∈ (𝑈 × {𝑌})(𝐾 ↾ (𝑈 × {𝑌})) ∈ ((((II ×t II) ↾t (𝑈 × {𝑌})) CnP 𝐶)‘𝑧))))
6135, 51, 60mpbir2and 956 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
62 sneq 4158 . . . . . . . . . . . . 13 (𝑤 = 𝑌 → {𝑤} = {𝑌})
6362xpeq2d 5099 . . . . . . . . . . . 12 (𝑤 = 𝑌 → (𝑈 × {𝑤}) = (𝑈 × {𝑌}))
6463reseq2d 5356 . . . . . . . . . . 11 (𝑤 = 𝑌 → (𝐾 ↾ (𝑈 × {𝑤})) = (𝐾 ↾ (𝑈 × {𝑌})))
6563oveq2d 6620 . . . . . . . . . . . 12 (𝑤 = 𝑌 → ((II ×t II) ↾t (𝑈 × {𝑤})) = ((II ×t II) ↾t (𝑈 × {𝑌})))
6665oveq1d 6619 . . . . . . . . . . 11 (𝑤 = 𝑌 → (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶))
6764, 66eleq12d 2692 . . . . . . . . . 10 (𝑤 = 𝑌 → ((𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)))
6867rspcev 3295 . . . . . . . . 9 ((𝑌𝑉 ∧ (𝐾 ↾ (𝑈 × {𝑌})) ∈ (((II ×t II) ↾t (𝑈 × {𝑌})) Cn 𝐶)) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
6917, 61, 68syl2anc 692 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶))
70 cvmlift2lem11.5 . . . . . . . . 9 (𝜑 → (∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶)))
7170imp 445 . . . . . . . 8 ((𝜑 ∧ ∃𝑤𝑉 (𝐾 ↾ (𝑈 × {𝑤})) ∈ (((II ×t II) ↾t (𝑈 × {𝑤})) Cn 𝐶)) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7269, 71syldan 487 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
7372adantr 481 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶))
747adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → 𝑍𝑉)
7574snssd 4309 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → {𝑍} ⊆ 𝑉)
76 xpss2 5190 . . . . . . . . 9 ({𝑍} ⊆ 𝑉 → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
7775, 76syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ (𝑈 × 𝑉))
78 iitop 22591 . . . . . . . . . 10 II ∈ Top
7978, 78txtopi 21303 . . . . . . . . 9 (II ×t II) ∈ Top
80 xpss12 5186 . . . . . . . . . 10 ((𝑈 ⊆ (0[,]1) ∧ 𝑉 ⊆ (0[,]1)) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
816, 30, 80syl2anc 692 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
8248restuni 20876 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8379, 81, 82sylancr 694 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) = ((II ×t II) ↾t (𝑈 × 𝑉)))
8477, 83sseqtrd 3620 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((II ×t II) ↾t (𝑈 × 𝑉)))
8584sselda 3583 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉)))
86 eqid 2621 . . . . . . 7 ((II ×t II) ↾t (𝑈 × 𝑉)) = ((II ×t II) ↾t (𝑈 × 𝑉))
8786cncnpi 20992 . . . . . 6 (((𝐾 ↾ (𝑈 × 𝑉)) ∈ (((II ×t II) ↾t (𝑈 × 𝑉)) Cn 𝐶) ∧ 𝑧 ((II ×t II) ↾t (𝑈 × 𝑉))) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8873, 85, 87syl2anc 692 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧))
8979a1i 11 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (II ×t II) ∈ Top)
9081adantr 481 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1)))
9178a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → II ∈ Top)
92 txopn 21315 . . . . . . . . . 10 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑈 ∈ II ∧ 𝑉 ∈ II)) → (𝑈 × 𝑉) ∈ (II ×t II))
9391, 91, 2, 27, 92syl22anc 1324 . . . . . . . . 9 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × 𝑉) ∈ (II ×t II))
94 isopn3i 20796 . . . . . . . . 9 (((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9579, 93, 94sylancr 694 . . . . . . . 8 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → ((int‘(II ×t II))‘(𝑈 × 𝑉)) = (𝑈 × 𝑉))
9677, 95sseqtr4d 3621 . . . . . . 7 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9796sselda 3583 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)))
9825ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9948, 18cnprest 21003 . . . . . 6 ((((II ×t II) ∈ Top ∧ (𝑈 × 𝑉) ⊆ ((0[,]1) × (0[,]1))) ∧ (𝑧 ∈ ((int‘(II ×t II))‘(𝑈 × 𝑉)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10089, 90, 97, 98, 99syl22anc 1324 . . . . 5 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ (𝐾 ↾ (𝑈 × 𝑉)) ∈ ((((II ×t II) ↾t (𝑈 × 𝑉)) CnP 𝐶)‘𝑧)))
10188, 100mpbird 247 . . . 4 (((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) ∧ 𝑧 ∈ (𝑈 × {𝑍})) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
10215, 101ssrabdv 3660 . . 3 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
103102, 39syl6sseqr 3631 . 2 ((𝜑 ∧ (𝑈 × {𝑌}) ⊆ 𝑀) → (𝑈 × {𝑍}) ⊆ 𝑀)
104103ex 450 1 (𝜑 → ((𝑈 × {𝑌}) ⊆ 𝑀 → (𝑈 × {𝑍}) ⊆ 𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908  {crab 2911   ⊆ wss 3555  {csn 4148  ∪ cuni 4402   ↦ cmpt 4673   × cxp 5072   ↾ cres 5076   ∘ ccom 5078  ⟶wf 5843  ‘cfv 5847  ℩crio 6564  (class class class)co 6604   ↦ cmpt2 6606  0cc0 9880  1c1 9881  [,]cicc 12120   ↾t crest 16002  Topctop 20617  TopOnctopon 20618  intcnt 20731   Cn ccn 20938   CnP ccnp 20939   ×t ctx 21273  IIcii 22586   CovMap ccvm 30942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-ec 7689  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-cn 20941  df-cnp 20942  df-cmp 21100  df-conn 21125  df-lly 21179  df-nlly 21180  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-ii 22588  df-htpy 22677  df-phtpy 22678  df-phtpc 22699  df-pconn 30908  df-sconn 30909  df-cvm 30943 This theorem is referenced by:  cvmlift2lem12  31001
 Copyright terms: Public domain W3C validator