Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem12 Structured version   Visualization version   GIF version

Theorem cvmlift2lem12 32565
Description: Lemma for cvmlift2 32567. (Contributed by Mario Carneiro, 1-Jun-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2.k 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
cvmlift2.m 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
cvmlift2.a 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
cvmlift2.s 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
Assertion
Ref Expression
cvmlift2lem12 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Distinct variable groups:   𝑢,𝑓,𝑥,𝑦,𝑧,𝐹   𝑓,𝑎,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧,𝜑   𝐴,𝑎,𝑡,𝑥   𝑀,𝑎,𝑟,𝑢,𝑥,𝑦,𝑧   𝑆,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐽,𝑢,𝑥,𝑦,𝑧   𝐺,𝑎,𝑓,𝑡,𝑢,𝑥,𝑦,𝑧   𝑓,𝐻,𝑢,𝑥,𝑦,𝑧   𝐶,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧   𝑃,𝑓,𝑢,𝑥,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝐾,𝑎,𝑓,𝑟,𝑡,𝑢,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑢,𝑓,𝑟)   𝐵(𝑢,𝑡,𝑓,𝑟,𝑎)   𝑃(𝑡,𝑟,𝑎)   𝑆(𝑟,𝑎)   𝐹(𝑡,𝑟,𝑎)   𝐺(𝑟)   𝐻(𝑡,𝑟,𝑎)   𝐽(𝑡,𝑟,𝑎)   𝑀(𝑡,𝑓)

Proof of Theorem cvmlift2lem12
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift2.b . . 3 𝐵 = 𝐶
2 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3 cvmlift2.g . . 3 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
4 cvmlift2.p . . 3 (𝜑𝑃𝐵)
5 cvmlift2.i . . 3 (𝜑 → (𝐹𝑃) = (0𝐺0))
6 cvmlift2.h . . 3 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
7 cvmlift2.k . . 3 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ ((𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑥𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑥)))‘𝑦))
81, 2, 3, 4, 5, 6, 7cvmlift2lem5 32558 . 2 (𝜑𝐾:((0[,]1) × (0[,]1))⟶𝐵)
9 iunid 4987 . . . . . . 7 𝑎 ∈ (0[,]1){𝑎} = (0[,]1)
109xpeq2i 5585 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = ((0[,]1) × (0[,]1))
11 xpiundi 5625 . . . . . 6 ((0[,]1) × 𝑎 ∈ (0[,]1){𝑎}) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
1210, 11eqtr3i 2849 . . . . 5 ((0[,]1) × (0[,]1)) = 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎})
13 cvmlift2.a . . . . . . . 8 𝐴 = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀}
14 iiuni 23492 . . . . . . . . 9 (0[,]1) = II
15 iiconn 23498 . . . . . . . . . 10 II ∈ Conn
1615a1i 11 . . . . . . . . 9 (𝜑 → II ∈ Conn)
17 inss1 4208 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ II
18 iicmp 23497 . . . . . . . . . . . . . . 15 II ∈ Comp
1918a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Comp)
20 iitop 23491 . . . . . . . . . . . . . . 15 II ∈ Top
2120a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → II ∈ Top)
2220, 20txtopi 22201 . . . . . . . . . . . . . . . 16 (II ×t II) ∈ Top
2314neiss2 21712 . . . . . . . . . . . . . . . . . . . . . . . 24 ((II ∈ Top ∧ 𝑢 ∈ ((nei‘II)‘{𝑟})) → {𝑟} ⊆ (0[,]1))
2420, 23mpan 688 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 ∈ ((nei‘II)‘{𝑟}) → {𝑟} ⊆ (0[,]1))
25 vex 3500 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 ∈ V
2625snss 4721 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 ∈ (0[,]1) ↔ {𝑟} ⊆ (0[,]1))
2724, 26sylibr 236 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 ∈ ((nei‘II)‘{𝑟}) → 𝑟 ∈ (0[,]1))
2827a1d 25 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 ∈ ((nei‘II)‘{𝑟}) → (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1)))
2928rexlimiv 3283 . . . . . . . . . . . . . . . . . . . 20 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → 𝑟 ∈ (0[,]1))
3029adantl 484 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑟 ∈ (0[,]1))
31 simpl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → 𝑡 ∈ (0[,]1))
3230, 31jca 514 . . . . . . . . . . . . . . . . . 18 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1)))
3332ssopab2i 5440 . . . . . . . . . . . . . . . . 17 {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
34 cvmlift2.s . . . . . . . . . . . . . . . . 17 𝑆 = {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))}
35 df-xp 5564 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡 ∈ (0[,]1))}
3633, 34, 353sstr4i 4013 . . . . . . . . . . . . . . . 16 𝑆 ⊆ ((0[,]1) × (0[,]1))
3720, 20, 14, 14txunii 22204 . . . . . . . . . . . . . . . . 17 ((0[,]1) × (0[,]1)) = (II ×t II)
3837ntropn 21660 . . . . . . . . . . . . . . . 16 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
3922, 36, 38mp2an 690 . . . . . . . . . . . . . . 15 ((int‘(II ×t II))‘𝑆) ∈ (II ×t II)
4039a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((int‘(II ×t II))‘𝑆) ∈ (II ×t II))
412adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
423adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
434adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑃𝐵)
445adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (𝐹𝑃) = (0𝐺0))
45 eqid 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
46 simprr 771 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑏 ∈ (0[,]1))
47 simprl 769 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → 𝑎 ∈ (0[,]1))
481, 41, 42, 43, 44, 6, 7, 45, 46, 47cvmlift2lem10 32563 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
4922a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (II ×t II) ∈ Top)
5036a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑆 ⊆ ((0[,]1) × (0[,]1)))
5120a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → II ∈ Top)
52 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑢 ∈ II)
53 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑣 ∈ II)
54 txopn 22213 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (𝑢 × 𝑣) ∈ (II ×t II))
5551, 51, 52, 53, 54syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ∈ (II ×t II))
56 simpr 487 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑟𝑢𝑡𝑣) → 𝑡𝑣)
57 elunii 4846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑡𝑣𝑣 ∈ II) → 𝑡 II)
5857, 14eleqtrrdi 2927 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑡𝑣𝑣 ∈ II) → 𝑡 ∈ (0[,]1))
5956, 53, 58syl2anr 598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡 ∈ (0[,]1))
6020a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → II ∈ Top)
6152adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ II)
62 simprl 769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑟𝑢)
63 opnneip 21730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((II ∈ Top ∧ 𝑢 ∈ II ∧ 𝑟𝑢) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6460, 61, 62, 63syl3anc 1367 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑢 ∈ ((nei‘II)‘{𝑟}))
6541ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
6642ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
6743ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑃𝐵)
6844ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝐹𝑃) = (0𝐺0))
69 cvmlift2.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑀 = {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)}
7053adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑣 ∈ II)
71 simplr2 1212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑎𝑣)
72 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → 𝑡𝑣)
73 sneq 4580 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑐 = 𝑤 → {𝑐} = {𝑤})
7473xpeq2d 5588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → (𝑢 × {𝑐}) = (𝑢 × {𝑤}))
7574reseq2d 5856 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (𝐾 ↾ (𝑢 × {𝑐})) = (𝐾 ↾ (𝑢 × {𝑤})))
7674oveq2d 7175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑐 = 𝑤 → ((II ×t II) ↾t (𝑢 × {𝑐})) = ((II ×t II) ↾t (𝑢 × {𝑤})))
7776oveq1d 7174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑐 = 𝑤 → (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
7875, 77eleq12d 2910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑐 = 𝑤 → ((𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶)))
7978cbvrexvw 3453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) ↔ ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
80 simplr3 1213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
8179, 80syl5bi 244 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (∃𝑐𝑣 (𝐾 ↾ (𝑢 × {𝑐})) ∈ (((II ×t II) ↾t (𝑢 × {𝑐})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))
821, 65, 66, 67, 68, 6, 7, 69, 61, 70, 71, 72, 81cvmlift2lem11 32564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 → (𝑢 × {𝑡}) ⊆ 𝑀))
831, 65, 66, 67, 68, 6, 7, 69, 61, 70, 72, 71, 81cvmlift2lem11 32564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑡}) ⊆ 𝑀 → (𝑢 × {𝑎}) ⊆ 𝑀))
8482, 83impbid 214 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
85 rspe 3307 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑢 ∈ ((nei‘II)‘{𝑟}) ∧ ((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8664, 84, 85syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
8759, 86jca 514 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) ∧ (𝑟𝑢𝑡𝑣)) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
8887ex 415 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
8988alrimivv 1928 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
90 df-xp 5564 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)}
9190, 34sseq12i 4000 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
92 ssopab2bw 5437 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({⟨𝑟, 𝑡⟩ ∣ (𝑟𝑢𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9391, 92bitri 277 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑢 × 𝑣) ⊆ 𝑆 ↔ ∀𝑟𝑡((𝑟𝑢𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
9489, 93sylibr 236 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ 𝑆)
9537ssntr 21669 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) ∧ ((𝑢 × 𝑣) ∈ (II ×t II) ∧ (𝑢 × 𝑣) ⊆ 𝑆)) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
9649, 50, 55, 94, 95syl22anc 836 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → (𝑢 × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆))
97 simpr1 1190 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑏𝑢)
98 simpr2 1191 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → 𝑎𝑣)
99 opelxpi 5595 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑏𝑢𝑎𝑣) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
10097, 98, 99syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ (𝑢 × 𝑣))
10196, 100sseldd 3971 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
102101ex 415 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
103102rexlimdvva 3297 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑏𝑢𝑎𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
10448, 103mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
105 vex 3500 . . . . . . . . . . . . . . . . . . 19 𝑎 ∈ V
106 opeq2 4807 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = 𝑎 → ⟨𝑏, 𝑤⟩ = ⟨𝑏, 𝑎⟩)
107106eleq1d 2900 . . . . . . . . . . . . . . . . . . 19 (𝑤 = 𝑎 → (⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆)))
108105, 107ralsn 4622 . . . . . . . . . . . . . . . . . 18 (∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑎⟩ ∈ ((int‘(II ×t II))‘𝑆))
109104, 108sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑎 ∈ (0[,]1) ∧ 𝑏 ∈ (0[,]1))) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
110109anassrs 470 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑏 ∈ (0[,]1)) → ∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
111110ralrimiva 3185 . . . . . . . . . . . . . . 15 ((𝜑𝑎 ∈ (0[,]1)) → ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
112 dfss3 3959 . . . . . . . . . . . . . . . 16 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆))
113 eleq1 2903 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑏, 𝑤⟩ → (𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆)))
114113ralxp 5715 . . . . . . . . . . . . . . . 16 (∀𝑢 ∈ ((0[,]1) × {𝑎})𝑢 ∈ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
115112, 114bitri 277 . . . . . . . . . . . . . . 15 (((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆) ↔ ∀𝑏 ∈ (0[,]1)∀𝑤 ∈ {𝑎}⟨𝑏, 𝑤⟩ ∈ ((int‘(II ×t II))‘𝑆))
116111, 115sylibr 236 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → ((0[,]1) × {𝑎}) ⊆ ((int‘(II ×t II))‘𝑆))
117 simpr 487 . . . . . . . . . . . . . 14 ((𝜑𝑎 ∈ (0[,]1)) → 𝑎 ∈ (0[,]1))
11814, 14, 19, 21, 40, 116, 117txtube 22251 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)))
11937ntrss2 21668 . . . . . . . . . . . . . . . . . . 19 (((II ×t II) ∈ Top ∧ 𝑆 ⊆ ((0[,]1) × (0[,]1))) → ((int‘(II ×t II))‘𝑆) ⊆ 𝑆)
12022, 36, 119mp2an 690 . . . . . . . . . . . . . . . . . 18 ((int‘(II ×t II))‘𝑆) ⊆ 𝑆
121 sstr 3978 . . . . . . . . . . . . . . . . . 18 ((((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) ∧ ((int‘(II ×t II))‘𝑆) ⊆ 𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
122120, 121mpan2 689 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ((0[,]1) × 𝑣) ⊆ 𝑆)
123 df-xp 5564 . . . . . . . . . . . . . . . . . . 19 ((0[,]1) × 𝑣) = {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)}
124123, 34sseq12i 4000 . . . . . . . . . . . . . . . . . 18 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ {⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))})
125 ssopab2bw 5437 . . . . . . . . . . . . . . . . . . 19 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
126 r2al 3204 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑟𝑡((𝑟 ∈ (0[,]1) ∧ 𝑡𝑣) → (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))))
127 ralcom 3357 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∀𝑡𝑣 (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
128125, 126, 1273bitr2i 301 . . . . . . . . . . . . . . . . . 18 ({⟨𝑟, 𝑡⟩ ∣ (𝑟 ∈ (0[,]1) ∧ 𝑡𝑣)} ⊆ {⟨𝑟, 𝑡⟩ ∣ (𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))} ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
129124, 128bitri 277 . . . . . . . . . . . . . . . . 17 (((0[,]1) × 𝑣) ⊆ 𝑆 ↔ ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
130122, 129sylib 220 . . . . . . . . . . . . . . . 16 (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)))
131 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
132131ralimi 3163 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀))
133 cvmlift2lem1 32553 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 → ((0[,]1) × {𝑡}) ⊆ 𝑀))
134 bicom 224 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
135134rexbii 3250 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
136135ralbii 3168 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) ↔ ∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀))
137 cvmlift2lem1 32553 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑡}) ⊆ 𝑀 ↔ (𝑢 × {𝑎}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
138136, 137sylbi 219 . . . . . . . . . . . . . . . . . . . 20 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑡}) ⊆ 𝑀 → ((0[,]1) × {𝑎}) ⊆ 𝑀))
139133, 138impbid 214 . . . . . . . . . . . . . . . . . . 19 (∀𝑟 ∈ (0[,]1)∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
140132, 139syl 17 . . . . . . . . . . . . . . . . . 18 (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
14113rabeq2i 3490 . . . . . . . . . . . . . . . . . . . . 21 (𝑎𝐴 ↔ (𝑎 ∈ (0[,]1) ∧ ((0[,]1) × {𝑎}) ⊆ 𝑀))
142141baib 538 . . . . . . . . . . . . . . . . . . . 20 (𝑎 ∈ (0[,]1) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
143142ad3antlr 729 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑎𝐴 ↔ ((0[,]1) × {𝑎}) ⊆ 𝑀))
144 elssuni 4871 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑣 ∈ II → 𝑣 II)
145144, 14sseqtrrdi 4021 . . . . . . . . . . . . . . . . . . . . . 22 (𝑣 ∈ II → 𝑣 ⊆ (0[,]1))
146145adantl 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → 𝑣 ⊆ (0[,]1))
147146sselda 3970 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → 𝑡 ∈ (0[,]1))
148 sneq 4580 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = 𝑡 → {𝑎} = {𝑡})
149148xpeq2d 5588 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = 𝑡 → ((0[,]1) × {𝑎}) = ((0[,]1) × {𝑡}))
150149sseq1d 4001 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑡 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
151150, 13elrab2 3686 . . . . . . . . . . . . . . . . . . . . 21 (𝑡𝐴 ↔ (𝑡 ∈ (0[,]1) ∧ ((0[,]1) × {𝑡}) ⊆ 𝑀))
152151baib 538 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ (0[,]1) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
153147, 152syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (𝑡𝐴 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀))
154143, 153bibi12d 348 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → ((𝑎𝐴𝑡𝐴) ↔ (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {𝑡}) ⊆ 𝑀)))
155140, 154syl5ibr 248 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) ∧ 𝑡𝑣) → (∀𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → (𝑎𝐴𝑡𝐴)))
156155ralimdva 3180 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (∀𝑡𝑣𝑟 ∈ (0[,]1)(𝑡 ∈ (0[,]1) ∧ ∃𝑢 ∈ ((nei‘II)‘{𝑟})((𝑢 × {𝑎}) ⊆ 𝑀 ↔ (𝑢 × {𝑡}) ⊆ 𝑀)) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
157130, 156syl5 34 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → (((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆) → ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
158157anim2d 613 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (0[,]1)) ∧ 𝑣 ∈ II) → ((𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
159158reximdva 3277 . . . . . . . . . . . . 13 ((𝜑𝑎 ∈ (0[,]1)) → (∃𝑣 ∈ II (𝑎𝑣 ∧ ((0[,]1) × 𝑣) ⊆ ((int‘(II ×t II))‘𝑆)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
160118, 159mpd 15 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (0[,]1)) → ∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
161160ralrimiva 3185 . . . . . . . . . . 11 (𝜑 → ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
162 ssrab2 4059 . . . . . . . . . . . . 13 {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ⊆ (0[,]1)
16313, 162eqsstri 4004 . . . . . . . . . . . 12 𝐴 ⊆ (0[,]1)
16414isclo 21698 . . . . . . . . . . . 12 ((II ∈ Top ∧ 𝐴 ⊆ (0[,]1)) → (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴))))
16520, 163, 164mp2an 690 . . . . . . . . . . 11 (𝐴 ∈ (II ∩ (Clsd‘II)) ↔ ∀𝑎 ∈ (0[,]1)∃𝑣 ∈ II (𝑎𝑣 ∧ ∀𝑡𝑣 (𝑎𝐴𝑡𝐴)))
166161, 165sylibr 236 . . . . . . . . . 10 (𝜑𝐴 ∈ (II ∩ (Clsd‘II)))
16717, 166sseldi 3968 . . . . . . . . 9 (𝜑𝐴 ∈ II)
168 0elunit 12858 . . . . . . . . . . . 12 0 ∈ (0[,]1)
169168a1i 11 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0[,]1))
170 relxp 5576 . . . . . . . . . . . . 13 Rel ((0[,]1) × {0})
171170a1i 11 . . . . . . . . . . . 12 (𝜑 → Rel ((0[,]1) × {0}))
172 opelxp 5594 . . . . . . . . . . . . 13 (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) ↔ (𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}))
173 id 22 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ (0[,]1) → 𝑟 ∈ (0[,]1))
174 opelxpi 5595 . . . . . . . . . . . . . . . . 17 ((𝑟 ∈ (0[,]1) ∧ 0 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
175173, 169, 174syl2anr 598 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)))
1762adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
1773adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
1784adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑃𝐵)
1795adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → (𝐹𝑃) = (0𝐺0))
180 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 𝑟 ∈ (0[,]1))
181168a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑟 ∈ (0[,]1)) → 0 ∈ (0[,]1))
1821, 176, 177, 178, 179, 6, 7, 45, 180, 181cvmlift2lem10 32563 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → ∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
183 df-3an 1085 . . . . . . . . . . . . . . . . . . 19 ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) ↔ ((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))))
184 simprr 771 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 0 ∈ 𝑣)
1858ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾:((0[,]1) × (0[,]1))⟶𝐵)
186185ffnd 6518 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 Fn ((0[,]1) × (0[,]1)))
187 fnov 7285 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 Fn ((0[,]1) × (0[,]1)) ↔ 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
188186, 187sylib 220 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐾 = (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)))
189188reseq1d 5855 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})))
190 simplrl 775 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ∈ II)
191 elssuni 4871 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 ∈ II → 𝑢 II)
192191, 14sseqtrrdi 4021 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑢 ∈ II → 𝑢 ⊆ (0[,]1))
193190, 192syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑢 ⊆ (0[,]1))
194169snssd 4745 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → {0} ⊆ (0[,]1))
195194ad3antrrr 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → {0} ⊆ (0[,]1))
196 resmpo 7275 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑢 ⊆ (0[,]1) ∧ {0} ⊆ (0[,]1)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
197193, 195, 196syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝑏𝐾𝑤)) ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)))
198193sselda 3970 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → 𝑏 ∈ (0[,]1))
199 simplll 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝜑)
2001, 2, 3, 4, 5, 6, 7cvmlift2lem8 32561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
201199, 200sylan 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏 ∈ (0[,]1)) → (𝑏𝐾0) = (𝐻𝑏))
202198, 201syldan 593 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑏𝐾0) = (𝐻𝑏))
203 elsni 4587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑤 ∈ {0} → 𝑤 = 0)
204203oveq2d 7175 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝑏𝐾0))
205204eqeq1d 2826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑤 ∈ {0} → ((𝑏𝐾𝑤) = (𝐻𝑏) ↔ (𝑏𝐾0) = (𝐻𝑏)))
206202, 205syl5ibrcom 249 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢) → (𝑤 ∈ {0} → (𝑏𝐾𝑤) = (𝐻𝑏)))
2072063impia 1113 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) ∧ 𝑏𝑢𝑤 ∈ {0}) → (𝑏𝐾𝑤) = (𝐻𝑏))
208207mpoeq3dva 7234 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝑏𝐾𝑤)) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
209189, 197, 2083eqtrd 2863 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) = (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)))
210 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t 𝑢) = (II ↾t 𝑢)
211 iitopon 23490 . . . . . . . . . . . . . . . . . . . . . . . . . 26 II ∈ (TopOn‘(0[,]1))
212211a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ (TopOn‘(0[,]1)))
213 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 (II ↾t {0}) = (II ↾t {0})
214212, 212cnmpt1st 22279 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ 𝑏) ∈ ((II ×t II) Cn II))
2151, 2, 3, 4, 5, 6cvmlift2lem2 32555 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
216215simp1d 1138 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐻 ∈ (II Cn 𝐶))
217199, 216syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝐻 ∈ (II Cn 𝐶))
218212, 212, 214, 217cnmpt21f 22283 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏 ∈ (0[,]1), 𝑤 ∈ (0[,]1) ↦ (𝐻𝑏)) ∈ ((II ×t II) Cn 𝐶))
219210, 212, 193, 213, 212, 195, 218cnmpt2res 22288 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶))
220 vex 3500 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑢 ∈ V
221 snex 5335 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {0} ∈ V
222 txrest 22242 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((II ∈ Top ∧ II ∈ Top) ∧ (𝑢 ∈ V ∧ {0} ∈ V)) → ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0})))
22320, 20, 220, 221, 222mp4an 691 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × {0})) = ((II ↾t 𝑢) ×t (II ↾t {0}))
224223oveq1i 7169 . . . . . . . . . . . . . . . . . . . . . . . 24 (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶) = (((II ↾t 𝑢) ×t (II ↾t {0})) Cn 𝐶)
225219, 224eleqtrrdi 2927 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑏𝑢, 𝑤 ∈ {0} ↦ (𝐻𝑏)) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
226209, 225eqeltrd 2916 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
227 sneq 4580 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑤 = 0 → {𝑤} = {0})
228227xpeq2d 5588 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → (𝑢 × {𝑤}) = (𝑢 × {0}))
229228reseq2d 5856 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (𝐾 ↾ (𝑢 × {𝑤})) = (𝐾 ↾ (𝑢 × {0})))
230228oveq2d 7175 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 0 → ((II ×t II) ↾t (𝑢 × {𝑤})) = ((II ×t II) ↾t (𝑢 × {0})))
231230oveq1d 7174 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 0 → (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) = (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶))
232229, 231eleq12d 2910 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 0 → ((𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) ↔ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)))
233232rspcev 3626 . . . . . . . . . . . . . . . . . . . . . 22 ((0 ∈ 𝑣 ∧ (𝐾 ↾ (𝑢 × {0})) ∈ (((II ×t II) ↾t (𝑢 × {0})) Cn 𝐶)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
234184, 226, 233syl2anc 586 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶))
235 opelxpi 5595 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑟𝑢 ∧ 0 ∈ 𝑣) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
236235adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ (𝑢 × 𝑣))
237 simplrr 776 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ∈ II)
238237, 145syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → 𝑣 ⊆ (0[,]1))
239 xpss12 5573 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑢 ⊆ (0[,]1) ∧ 𝑣 ⊆ (0[,]1)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
240193, 238, 239syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1)))
24137restuni 21773 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
24222, 240, 241sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) = ((II ×t II) ↾t (𝑢 × 𝑣)))
243236, 242eleqtrd 2918 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)))
244 eqid 2824 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((II ×t II) ↾t (𝑢 × 𝑣)) = ((II ×t II) ↾t (𝑢 × 𝑣))
245244cncnpi 21889 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) ∧ ⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣))) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩))
246245expcom 416 . . . . . . . . . . . . . . . . . . . . . . 23 (⟨𝑟, 0⟩ ∈ ((II ×t II) ↾t (𝑢 × 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
247243, 246syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
24822a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (II ×t II) ∈ Top)
24920a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → II ∈ Top)
250249, 249, 190, 237, 54syl22anc 836 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝑢 × 𝑣) ∈ (II ×t II))
251 isopn3i 21693 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ∈ (II ×t II)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
25222, 250, 251sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((int‘(II ×t II))‘(𝑢 × 𝑣)) = (𝑢 × 𝑣))
253236, 252eleqtrrd 2919 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)))
25437, 1cnprest 21900 . . . . . . . . . . . . . . . . . . . . . . 23 ((((II ×t II) ∈ Top ∧ (𝑢 × 𝑣) ⊆ ((0[,]1) × (0[,]1))) ∧ (⟨𝑟, 0⟩ ∈ ((int‘(II ×t II))‘(𝑢 × 𝑣)) ∧ 𝐾:((0[,]1) × (0[,]1))⟶𝐵)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
255248, 240, 253, 185, 254syl22anc 836 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩) ↔ (𝐾 ↾ (𝑢 × 𝑣)) ∈ ((((II ×t II) ↾t (𝑢 × 𝑣)) CnP 𝐶)‘⟨𝑟, 0⟩)))
256247, 255sylibrd 261 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
257234, 256embantd 59 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) ∧ (𝑟𝑢 ∧ 0 ∈ 𝑣)) → ((∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
258257expimpd 456 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → (((𝑟𝑢 ∧ 0 ∈ 𝑣) ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
259183, 258syl5bi 244 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑟 ∈ (0[,]1)) ∧ (𝑢 ∈ II ∧ 𝑣 ∈ II)) → ((𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
260259rexlimdvva 3297 . . . . . . . . . . . . . . . . 17 ((𝜑𝑟 ∈ (0[,]1)) → (∃𝑢 ∈ II ∃𝑣 ∈ II (𝑟𝑢 ∧ 0 ∈ 𝑣 ∧ (∃𝑤𝑣 (𝐾 ↾ (𝑢 × {𝑤})) ∈ (((II ×t II) ↾t (𝑢 × {𝑤})) Cn 𝐶) → (𝐾 ↾ (𝑢 × 𝑣)) ∈ (((II ×t II) ↾t (𝑢 × 𝑣)) Cn 𝐶))) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
261182, 260mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑟 ∈ (0[,]1)) → 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
262 fveq2 6673 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑟, 0⟩ → (((II ×t II) CnP 𝐶)‘𝑧) = (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩))
263262eleq2d 2901 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑟, 0⟩ → (𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧) ↔ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
264263, 69elrab2 3686 . . . . . . . . . . . . . . . 16 (⟨𝑟, 0⟩ ∈ 𝑀 ↔ (⟨𝑟, 0⟩ ∈ ((0[,]1) × (0[,]1)) ∧ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘⟨𝑟, 0⟩)))
265175, 261, 264sylanbrc 585 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ (0[,]1)) → ⟨𝑟, 0⟩ ∈ 𝑀)
266 elsni 4587 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ {0} → 𝑎 = 0)
267266opeq2d 4813 . . . . . . . . . . . . . . . 16 (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ = ⟨𝑟, 0⟩)
268267eleq1d 2900 . . . . . . . . . . . . . . 15 (𝑎 ∈ {0} → (⟨𝑟, 𝑎⟩ ∈ 𝑀 ↔ ⟨𝑟, 0⟩ ∈ 𝑀))
269265, 268syl5ibrcom 249 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ (0[,]1)) → (𝑎 ∈ {0} → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
270269expimpd 456 . . . . . . . . . . . . 13 (𝜑 → ((𝑟 ∈ (0[,]1) ∧ 𝑎 ∈ {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
271172, 270syl5bi 244 . . . . . . . . . . . 12 (𝜑 → (⟨𝑟, 𝑎⟩ ∈ ((0[,]1) × {0}) → ⟨𝑟, 𝑎⟩ ∈ 𝑀))
272171, 271relssdv 5664 . . . . . . . . . . 11 (𝜑 → ((0[,]1) × {0}) ⊆ 𝑀)
273 sneq 4580 . . . . . . . . . . . . . 14 (𝑎 = 0 → {𝑎} = {0})
274273xpeq2d 5588 . . . . . . . . . . . . 13 (𝑎 = 0 → ((0[,]1) × {𝑎}) = ((0[,]1) × {0}))
275274sseq1d 4001 . . . . . . . . . . . 12 (𝑎 = 0 → (((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ((0[,]1) × {0}) ⊆ 𝑀))
276275, 13elrab2 3686 . . . . . . . . . . 11 (0 ∈ 𝐴 ↔ (0 ∈ (0[,]1) ∧ ((0[,]1) × {0}) ⊆ 𝑀))
277169, 272, 276sylanbrc 585 . . . . . . . . . 10 (𝜑 → 0 ∈ 𝐴)
278277ne0d 4304 . . . . . . . . 9 (𝜑𝐴 ≠ ∅)
279 inss2 4209 . . . . . . . . . 10 (II ∩ (Clsd‘II)) ⊆ (Clsd‘II)
280279, 166sseldi 3968 . . . . . . . . 9 (𝜑𝐴 ∈ (Clsd‘II))
28114, 16, 167, 278, 280connclo 22026 . . . . . . . 8 (𝜑𝐴 = (0[,]1))
28213, 281syl5reqr 2874 . . . . . . 7 (𝜑 → (0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀})
283 rabid2 3384 . . . . . . 7 ((0[,]1) = {𝑎 ∈ (0[,]1) ∣ ((0[,]1) × {𝑎}) ⊆ 𝑀} ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
284282, 283sylib 220 . . . . . 6 (𝜑 → ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
285 iunss 4972 . . . . . 6 ( 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀 ↔ ∀𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
286284, 285sylibr 236 . . . . 5 (𝜑 𝑎 ∈ (0[,]1)((0[,]1) × {𝑎}) ⊆ 𝑀)
28712, 286eqsstrid 4018 . . . 4 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ 𝑀)
288287, 69sseqtrdi 4020 . . 3 (𝜑 → ((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)})
289 ssrab 4052 . . . 4 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} ↔ (((0[,]1) × (0[,]1)) ⊆ ((0[,]1) × (0[,]1)) ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)))
290289simprbi 499 . . 3 (((0[,]1) × (0[,]1)) ⊆ {𝑧 ∈ ((0[,]1) × (0[,]1)) ∣ 𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧)} → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
291288, 290syl 17 . 2 (𝜑 → ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))
292 txtopon 22202 . . . 4 ((II ∈ (TopOn‘(0[,]1)) ∧ II ∈ (TopOn‘(0[,]1))) → (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))))
293211, 211, 292mp2an 690 . . 3 (II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1)))
294 cvmtop1 32511 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
2952, 294syl 17 . . . 4 (𝜑𝐶 ∈ Top)
2961toptopon 21528 . . . 4 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
297295, 296sylib 220 . . 3 (𝜑𝐶 ∈ (TopOn‘𝐵))
298 cncnp 21891 . . 3 (((II ×t II) ∈ (TopOn‘((0[,]1) × (0[,]1))) ∧ 𝐶 ∈ (TopOn‘𝐵)) → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
299293, 297, 298sylancr 589 . 2 (𝜑 → (𝐾 ∈ ((II ×t II) Cn 𝐶) ↔ (𝐾:((0[,]1) × (0[,]1))⟶𝐵 ∧ ∀𝑧 ∈ ((0[,]1) × (0[,]1))𝐾 ∈ (((II ×t II) CnP 𝐶)‘𝑧))))
3008, 291, 299mpbir2and 711 1 (𝜑𝐾 ∈ ((II ×t II) Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1534   = wceq 1536  wcel 2113  wral 3141  wrex 3142  {crab 3145  Vcvv 3497  cdif 3936  cin 3938  wss 3939  c0 4294  𝒫 cpw 4542  {csn 4570  cop 4576   cuni 4841   ciun 4922  {copab 5131  cmpt 5149   × cxp 5556  ccnv 5557  cres 5560  cima 5561  ccom 5562  Rel wrel 5563   Fn wfn 6353  wf 6354  cfv 6358  crio 7116  (class class class)co 7159  cmpo 7161  0cc0 10540  1c1 10541  [,]cicc 12744  t crest 16697  Topctop 21504  TopOnctopon 21521  Clsdccld 21627  intcnt 21628  neicnei 21708   Cn ccn 21835   CnP ccnp 21836  Compccmp 21997  Conncconn 22022   ×t ctx 22171  Homeochmeo 22364  IIcii 23486   CovMap ccvm 32506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ec 8294  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-cn 21838  df-cnp 21839  df-cmp 21998  df-conn 22023  df-lly 22077  df-nlly 22078  df-tx 22173  df-hmeo 22366  df-xms 22933  df-ms 22934  df-tms 22935  df-ii 23488  df-htpy 23577  df-phtpy 23578  df-phtpc 23599  df-pconn 32472  df-sconn 32473  df-cvm 32507
This theorem is referenced by:  cvmlift2lem13  32566
  Copyright terms: Public domain W3C validator