Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift2lem3 Structured version   Visualization version   GIF version

Theorem cvmlift2lem3 30992
Description: Lemma for cvmlift2 31003. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
cvmlift2.b 𝐵 = 𝐶
cvmlift2.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift2.g (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
cvmlift2.p (𝜑𝑃𝐵)
cvmlift2.i (𝜑 → (𝐹𝑃) = (0𝐺0))
cvmlift2.h 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
cvmlift2lem3.1 𝐾 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
Assertion
Ref Expression
cvmlift2lem3 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻𝑋)))
Distinct variable groups:   𝑧,𝑓,𝐹   𝜑,𝑓,𝑧   𝑓,𝐽,𝑧   𝑓,𝐺,𝑧   𝑓,𝐻,𝑧   𝑓,𝑋,𝑧   𝐶,𝑓,𝑧   𝑃,𝑓,𝑧   𝑧,𝐵
Allowed substitution hints:   𝐵(𝑓)   𝐾(𝑧,𝑓)

Proof of Theorem cvmlift2lem3
StepHypRef Expression
1 cvmlift2.b . 2 𝐵 = 𝐶
2 cvmlift2lem3.1 . 2 𝐾 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝑓‘0) = (𝐻𝑋)))
3 cvmlift2.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
43adantr 481 . 2 ((𝜑𝑋 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
5 iitopon 22590 . . . 4 II ∈ (TopOn‘(0[,]1))
65a1i 11 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → II ∈ (TopOn‘(0[,]1)))
7 simpr 477 . . . 4 ((𝜑𝑋 ∈ (0[,]1)) → 𝑋 ∈ (0[,]1))
86, 6, 7cnmptc 21375 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑋) ∈ (II Cn II))
96cnmptid 21374 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ 𝑧) ∈ (II Cn II))
10 cvmlift2.g . . . 4 (𝜑𝐺 ∈ ((II ×t II) Cn 𝐽))
1110adantr 481 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → 𝐺 ∈ ((II ×t II) Cn 𝐽))
126, 8, 9, 11cnmpt12f 21379 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∈ (II Cn 𝐽))
13 cvmlift2.p . . . . . 6 (𝜑𝑃𝐵)
14 cvmlift2.i . . . . . 6 (𝜑 → (𝐹𝑃) = (0𝐺0))
15 cvmlift2.h . . . . . 6 𝐻 = (𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝑓‘0) = 𝑃))
161, 3, 10, 13, 14, 15cvmlift2lem2 30991 . . . . 5 (𝜑 → (𝐻 ∈ (II Cn 𝐶) ∧ (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) ∧ (𝐻‘0) = 𝑃))
1716simp1d 1071 . . . 4 (𝜑𝐻 ∈ (II Cn 𝐶))
18 iiuni 22592 . . . . 5 (0[,]1) = II
1918, 1cnf 20960 . . . 4 (𝐻 ∈ (II Cn 𝐶) → 𝐻:(0[,]1)⟶𝐵)
2017, 19syl 17 . . 3 (𝜑𝐻:(0[,]1)⟶𝐵)
2120ffvelrnda 6315 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐻𝑋) ∈ 𝐵)
22 0elunit 12232 . . . 4 0 ∈ (0[,]1)
23 oveq2 6612 . . . . 5 (𝑧 = 0 → (𝑋𝐺𝑧) = (𝑋𝐺0))
24 eqid 2621 . . . . 5 (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))
25 ovex 6632 . . . . 5 (𝑋𝐺0) ∈ V
2623, 24, 25fvmpt 6239 . . . 4 (0 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0))
2722, 26mp1i 13 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0) = (𝑋𝐺0))
2816simp2d 1072 . . . . 5 (𝜑 → (𝐹𝐻) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)))
2928fveq1d 6150 . . . 4 (𝜑 → ((𝐹𝐻)‘𝑋) = ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋))
30 oveq1 6611 . . . . 5 (𝑧 = 𝑋 → (𝑧𝐺0) = (𝑋𝐺0))
31 eqid 2621 . . . . 5 (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0)) = (𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))
3230, 31, 25fvmpt 6239 . . . 4 (𝑋 ∈ (0[,]1) → ((𝑧 ∈ (0[,]1) ↦ (𝑧𝐺0))‘𝑋) = (𝑋𝐺0))
3329, 32sylan9eq 2675 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝑋𝐺0))
34 fvco3 6232 . . . 4 ((𝐻:(0[,]1)⟶𝐵𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3520, 34sylan 488 . . 3 ((𝜑𝑋 ∈ (0[,]1)) → ((𝐹𝐻)‘𝑋) = (𝐹‘(𝐻𝑋)))
3627, 33, 353eqtr2rd 2662 . 2 ((𝜑𝑋 ∈ (0[,]1)) → (𝐹‘(𝐻𝑋)) = ((𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧))‘0))
371, 2, 4, 12, 21, 36cvmliftiota 30988 1 ((𝜑𝑋 ∈ (0[,]1)) → (𝐾 ∈ (II Cn 𝐶) ∧ (𝐹𝐾) = (𝑧 ∈ (0[,]1) ↦ (𝑋𝐺𝑧)) ∧ (𝐾‘0) = (𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987   cuni 4402  cmpt 4673  ccom 5078  wf 5843  cfv 5847  crio 6564  (class class class)co 6604  0cc0 9880  1c1 9881  [,]cicc 12120  TopOnctopon 20618   Cn ccn 20938   ×t ctx 21273  IIcii 22586   CovMap ccvm 30942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-se 5034  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-supp 7241  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-ec 7689  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fsupp 8220  df-fi 8261  df-sup 8292  df-inf 8293  df-oi 8359  df-card 8709  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ioo 12121  df-ico 12123  df-icc 12124  df-fz 12269  df-fzo 12407  df-fl 12533  df-seq 12742  df-exp 12801  df-hash 13058  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153  df-sum 14351  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-0g 16023  df-gsum 16024  df-topgen 16025  df-pt 16026  df-prds 16029  df-xrs 16083  df-qtop 16088  df-imas 16089  df-xps 16091  df-mre 16167  df-mrc 16168  df-acs 16170  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-submnd 17257  df-mulg 17462  df-cntz 17671  df-cmn 18116  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-cnfld 19666  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-cn 20941  df-cnp 20942  df-cmp 21100  df-conn 21125  df-lly 21179  df-nlly 21180  df-tx 21275  df-hmeo 21468  df-xms 22035  df-ms 22036  df-tms 22037  df-ii 22588  df-htpy 22677  df-phtpy 22678  df-phtpc 22699  df-pconn 30908  df-sconn 30909  df-cvm 30943
This theorem is referenced by:  cvmlift2lem5  30994  cvmlift2lem6  30995  cvmlift2lem7  30996  cvmlift2lem8  30997
  Copyright terms: Public domain W3C validator