Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3 Structured version   Visualization version   GIF version

Theorem cvmlift3 32577
Description: A general version of cvmlift 32548. If 𝐾 is simply connected and weakly locally path-connected, then there is a unique lift of functions on 𝐾 which commutes with the covering map. (Contributed by Mario Carneiro, 9-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
Assertion
Ref Expression
cvmlift3 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Distinct variable groups:   𝑓,𝐽   𝑓,𝐹   𝐵,𝑓   𝑓,𝐺   𝐶,𝑓   𝜑,𝑓   𝑓,𝐾   𝑃,𝑓   𝑓,𝑂   𝑓,𝑌

Proof of Theorem cvmlift3
Dummy variables 𝑏 𝑐 𝑑 𝑘 𝑠 𝑧 𝑔 𝑎 𝑢 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 eqeq2 2835 . . . . . . . 8 (𝑏 = 𝑧 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏 ↔ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
11103anbi3d 1438 . . . . . . 7 (𝑏 = 𝑧 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1211rexbidv 3299 . . . . . 6 (𝑏 = 𝑧 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏) ↔ ∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)))
1312cbvriotavw 7126 . . . . 5 (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧))
14 fveq1 6671 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘0) = (𝑓‘0))
1514eqeq1d 2825 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘0) = 𝑂 ↔ (𝑓‘0) = 𝑂))
16 fveq1 6671 . . . . . . . . . 10 (𝑐 = 𝑓 → (𝑐‘1) = (𝑓‘1))
1716eqeq1d 2825 . . . . . . . . 9 (𝑐 = 𝑓 → ((𝑐‘1) = 𝑎 ↔ (𝑓‘1) = 𝑎))
18 coeq2 5731 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝐹𝑑) = (𝐹𝑔))
1918eqeq1d 2825 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝐹𝑑) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑐)))
20 fveq1 6671 . . . . . . . . . . . . . . 15 (𝑑 = 𝑔 → (𝑑‘0) = (𝑔‘0))
2120eqeq1d 2825 . . . . . . . . . . . . . 14 (𝑑 = 𝑔 → ((𝑑‘0) = 𝑃 ↔ (𝑔‘0) = 𝑃))
2219, 21anbi12d 632 . . . . . . . . . . . . 13 (𝑑 = 𝑔 → (((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)))
2322cbvriotavw 7126 . . . . . . . . . . . 12 (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃))
24 coeq2 5731 . . . . . . . . . . . . . . 15 (𝑐 = 𝑓 → (𝐺𝑐) = (𝐺𝑓))
2524eqeq2d 2834 . . . . . . . . . . . . . 14 (𝑐 = 𝑓 → ((𝐹𝑔) = (𝐺𝑐) ↔ (𝐹𝑔) = (𝐺𝑓)))
2625anbi1d 631 . . . . . . . . . . . . 13 (𝑐 = 𝑓 → (((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃) ↔ ((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2726riotabidv 7118 . . . . . . . . . . . 12 (𝑐 = 𝑓 → (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑐) ∧ (𝑔‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2823, 27syl5eq 2870 . . . . . . . . . . 11 (𝑐 = 𝑓 → (𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃)) = (𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃)))
2928fveq1d 6674 . . . . . . . . . 10 (𝑐 = 𝑓 → ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1))
3029eqeq1d 2825 . . . . . . . . 9 (𝑐 = 𝑓 → (((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧 ↔ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
3115, 17, 303anbi123d 1432 . . . . . . . 8 (𝑐 = 𝑓 → (((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3231cbvrexvw 3452 . . . . . . 7 (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧))
33 eqeq2 2835 . . . . . . . . 9 (𝑎 = 𝑥 → ((𝑓‘1) = 𝑎 ↔ (𝑓‘1) = 𝑥))
34333anbi2d 1437 . . . . . . . 8 (𝑎 = 𝑥 → (((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3534rexbidv 3299 . . . . . . 7 (𝑎 = 𝑥 → (∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑎 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3632, 35syl5bb 285 . . . . . 6 (𝑎 = 𝑥 → (∃𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧) ↔ ∃𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3736riotabidv 7118 . . . . 5 (𝑎 = 𝑥 → (𝑧𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑧)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3813, 37syl5eq 2870 . . . 4 (𝑎 = 𝑥 → (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏)) = (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
3938cbvmptv 5171 . . 3 (𝑎𝑌 ↦ (𝑏𝐵𝑐 ∈ (II Cn 𝐾)((𝑐‘0) = 𝑂 ∧ (𝑐‘1) = 𝑎 ∧ ((𝑑 ∈ (II Cn 𝐶)((𝐹𝑑) = (𝐺𝑐) ∧ (𝑑‘0) = 𝑃))‘1) = 𝑏))) = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
40 eqid 2823 . . . 4 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
4140cvmscbv 32507 . . 3 (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))}) = (𝑎𝐽 ↦ {𝑏 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑏 = (𝐹𝑎) ∧ ∀𝑣𝑏 (∀𝑢 ∈ (𝑏 ∖ {𝑣})(𝑣𝑢) = ∅ ∧ (𝐹𝑣) ∈ ((𝐶t 𝑣)Homeo(𝐽t 𝑎))))})
421, 2, 3, 4, 5, 6, 7, 8, 9, 39, 41cvmlift3lem9 32576 . 2 (𝜑 → ∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
43 sconnpconn 32476 . . . 4 (𝐾 ∈ SConn → 𝐾 ∈ PConn)
44 pconnconn 32480 . . . 4 (𝐾 ∈ PConn → 𝐾 ∈ Conn)
454, 43, 443syl 18 . . 3 (𝜑𝐾 ∈ Conn)
46 pconnconn 32480 . . . . . 6 (𝑥 ∈ PConn → 𝑥 ∈ Conn)
4746ssriv 3973 . . . . 5 PConn ⊆ Conn
48 nllyss 22090 . . . . 5 (PConn ⊆ Conn → 𝑛-Locally PConn ⊆ 𝑛-Locally Conn)
4947, 48ax-mp 5 . . . 4 𝑛-Locally PConn ⊆ 𝑛-Locally Conn
5049, 5sseldi 3967 . . 3 (𝜑𝐾 ∈ 𝑛-Locally Conn)
511, 2, 3, 45, 50, 6, 7, 8, 9cvmliftmo 32533 . 2 (𝜑 → ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
52 reu5 3432 . 2 (∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ↔ (∃𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃) ∧ ∃*𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃)))
5342, 51, 52sylanbrc 585 1 (𝜑 → ∃!𝑓 ∈ (𝐾 Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓𝑂) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  wrex 3141  ∃!wreu 3142  ∃*wrmo 3143  {crab 3144  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840  cmpt 5148  ccnv 5556  cres 5559  cima 5560  ccom 5561  cfv 6357  crio 7115  (class class class)co 7158  0cc0 10539  1c1 10540  t crest 16696   Cn ccn 21834  Conncconn 22021  𝑛-Locally cnlly 22075  Homeochmeo 22363  IIcii 23485  PConncpconn 32468  SConncsconn 32469   CovMap ccvm 32504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-cmp 21997  df-conn 22022  df-lly 22076  df-nlly 22077  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-ii 23487  df-htpy 23576  df-phtpy 23577  df-phtpc 23598  df-pco 23611  df-pconn 32470  df-sconn 32471  df-cvm 32505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator