Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmlift3lem8 Structured version   Visualization version   GIF version

Theorem cvmlift3lem8 32575
Description: Lemma for cvmlift2 32565. (Contributed by Mario Carneiro, 6-Jul-2015.)
Hypotheses
Ref Expression
cvmlift3.b 𝐵 = 𝐶
cvmlift3.y 𝑌 = 𝐾
cvmlift3.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmlift3.k (𝜑𝐾 ∈ SConn)
cvmlift3.l (𝜑𝐾 ∈ 𝑛-Locally PConn)
cvmlift3.o (𝜑𝑂𝑌)
cvmlift3.g (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
cvmlift3.p (𝜑𝑃𝐵)
cvmlift3.e (𝜑 → (𝐹𝑃) = (𝐺𝑂))
cvmlift3.h 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
cvmlift3lem7.s 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmlift3lem8 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
Distinct variable groups:   𝑐,𝑑,𝑓,𝑘,𝑠,𝑧,𝑔,𝑥   𝐽,𝑐   𝑔,𝑑,𝑥,𝐽,𝑓,𝑘,𝑠   𝐹,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠   𝑥,𝑧,𝐹   𝐻,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑆,𝑓,𝑥   𝐵,𝑑,𝑓,𝑔,𝑥,𝑧   𝐺,𝑐,𝑑,𝑓,𝑔,𝑘,𝑥,𝑧   𝐶,𝑐,𝑑,𝑓,𝑔,𝑘,𝑠,𝑥,𝑧   𝜑,𝑓,𝑥   𝐾,𝑐,𝑓,𝑔,𝑥,𝑧   𝑃,𝑐,𝑑,𝑓,𝑔,𝑥,𝑧   𝑂,𝑐,𝑓,𝑔,𝑥,𝑧   𝑓,𝑌,𝑔,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐵(𝑘,𝑠,𝑐)   𝑃(𝑘,𝑠)   𝑆(𝑧,𝑔,𝑘,𝑠,𝑐,𝑑)   𝐺(𝑠)   𝐻(𝑘,𝑠)   𝐽(𝑧)   𝐾(𝑘,𝑠,𝑑)   𝑂(𝑘,𝑠,𝑑)   𝑌(𝑘,𝑠,𝑐,𝑑)

Proof of Theorem cvmlift3lem8
Dummy variables 𝑏 𝑎 𝑣 𝑦 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cvmlift3.b . . 3 𝐵 = 𝐶
2 cvmlift3.y . . 3 𝑌 = 𝐾
3 cvmlift3.f . . 3 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
4 cvmlift3.k . . 3 (𝜑𝐾 ∈ SConn)
5 cvmlift3.l . . 3 (𝜑𝐾 ∈ 𝑛-Locally PConn)
6 cvmlift3.o . . 3 (𝜑𝑂𝑌)
7 cvmlift3.g . . 3 (𝜑𝐺 ∈ (𝐾 Cn 𝐽))
8 cvmlift3.p . . 3 (𝜑𝑃𝐵)
9 cvmlift3.e . . 3 (𝜑 → (𝐹𝑃) = (𝐺𝑂))
10 cvmlift3.h . . 3 𝐻 = (𝑥𝑌 ↦ (𝑧𝐵𝑓 ∈ (II Cn 𝐾)((𝑓‘0) = 𝑂 ∧ (𝑓‘1) = 𝑥 ∧ ((𝑔 ∈ (II Cn 𝐶)((𝐹𝑔) = (𝐺𝑓) ∧ (𝑔‘0) = 𝑃))‘1) = 𝑧)))
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cvmlift3lem3 32570 . 2 (𝜑𝐻:𝑌𝐵)
123adantr 483 . . . . 5 ((𝜑𝑦𝑌) → 𝐹 ∈ (𝐶 CovMap 𝐽))
13 eqid 2823 . . . . . . . 8 𝐽 = 𝐽
142, 13cnf 21856 . . . . . . 7 (𝐺 ∈ (𝐾 Cn 𝐽) → 𝐺:𝑌 𝐽)
157, 14syl 17 . . . . . 6 (𝜑𝐺:𝑌 𝐽)
1615ffvelrnda 6853 . . . . 5 ((𝜑𝑦𝑌) → (𝐺𝑦) ∈ 𝐽)
17 cvmlift3lem7.s . . . . . 6 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑐𝑠 (∀𝑑 ∈ (𝑠 ∖ {𝑐})(𝑐𝑑) = ∅ ∧ (𝐹𝑐) ∈ ((𝐶t 𝑐)Homeo(𝐽t 𝑘))))})
1817, 13cvmcov 32512 . . . . 5 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺𝑦) ∈ 𝐽) → ∃𝑎𝐽 ((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅))
1912, 16, 18syl2anc 586 . . . 4 ((𝜑𝑦𝑌) → ∃𝑎𝐽 ((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅))
20 n0 4312 . . . . . . 7 ((𝑆𝑎) ≠ ∅ ↔ ∃𝑡 𝑡 ∈ (𝑆𝑎))
215ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝐾 ∈ 𝑛-Locally PConn)
227ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝐺 ∈ (𝐾 Cn 𝐽))
23 simprr 771 . . . . . . . . . . . . 13 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑡 ∈ (𝑆𝑎))
2417cvmsrcl 32513 . . . . . . . . . . . . 13 (𝑡 ∈ (𝑆𝑎) → 𝑎𝐽)
2523, 24syl 17 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑎𝐽)
26 cnima 21875 . . . . . . . . . . . 12 ((𝐺 ∈ (𝐾 Cn 𝐽) ∧ 𝑎𝐽) → (𝐺𝑎) ∈ 𝐾)
2722, 25, 26syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (𝐺𝑎) ∈ 𝐾)
28 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑦𝑌)
29 simprl 769 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (𝐺𝑦) ∈ 𝑎)
30 ffn 6516 . . . . . . . . . . . . 13 (𝐺:𝑌 𝐽𝐺 Fn 𝑌)
31 elpreima 6830 . . . . . . . . . . . . 13 (𝐺 Fn 𝑌 → (𝑦 ∈ (𝐺𝑎) ↔ (𝑦𝑌 ∧ (𝐺𝑦) ∈ 𝑎)))
3222, 14, 30, 314syl 19 . . . . . . . . . . . 12 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (𝑦 ∈ (𝐺𝑎) ↔ (𝑦𝑌 ∧ (𝐺𝑦) ∈ 𝑎)))
3328, 29, 32mpbir2and 711 . . . . . . . . . . 11 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝑦 ∈ (𝐺𝑎))
34 nlly2i 22086 . . . . . . . . . . 11 ((𝐾 ∈ 𝑛-Locally PConn ∧ (𝐺𝑎) ∈ 𝐾𝑦 ∈ (𝐺𝑎)) → ∃𝑚 ∈ 𝒫 (𝐺𝑎)∃𝑣𝐾 (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))
3521, 27, 33, 34syl3anc 1367 . . . . . . . . . 10 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → ∃𝑚 ∈ 𝒫 (𝐺𝑎)∃𝑣𝐾 (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))
363ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
374ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐾 ∈ SConn)
385ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐾 ∈ 𝑛-Locally PConn)
396ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑂𝑌)
407ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐺 ∈ (𝐾 Cn 𝐽))
418ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑃𝐵)
429ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → (𝐹𝑃) = (𝐺𝑂))
4329adantr 483 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → (𝐺𝑦) ∈ 𝑎)
4423adantr 483 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑡 ∈ (𝑆𝑎))
45 simprll 777 . . . . . . . . . . . . . 14 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑚 ∈ 𝒫 (𝐺𝑎))
4645elpwid 4552 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑚 ⊆ (𝐺𝑎))
47 eqid 2823 . . . . . . . . . . . . 13 (𝑏𝑡 (𝐻𝑦) ∈ 𝑏) = (𝑏𝑡 (𝐻𝑦) ∈ 𝑏)
48 simprr3 1219 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → (𝐾t 𝑚) ∈ PConn)
49 simprlr 778 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑣𝐾)
50 simprr2 1218 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑣𝑚)
51 simprr1 1217 . . . . . . . . . . . . 13 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝑦𝑣)
521, 2, 36, 37, 38, 39, 40, 41, 42, 10, 17, 43, 44, 46, 47, 48, 49, 50, 51cvmlift3lem7 32574 . . . . . . . . . . . 12 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ ((𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾) ∧ (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn))) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
5352expr 459 . . . . . . . . . . 11 ((((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) ∧ (𝑚 ∈ 𝒫 (𝐺𝑎) ∧ 𝑣𝐾)) → ((𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5453rexlimdvva 3296 . . . . . . . . . 10 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → (∃𝑚 ∈ 𝒫 (𝐺𝑎)∃𝑣𝐾 (𝑦𝑣𝑣𝑚 ∧ (𝐾t 𝑚) ∈ PConn) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5535, 54mpd 15 . . . . . . . . 9 (((𝜑𝑦𝑌) ∧ ((𝐺𝑦) ∈ 𝑎𝑡 ∈ (𝑆𝑎))) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
5655expr 459 . . . . . . . 8 (((𝜑𝑦𝑌) ∧ (𝐺𝑦) ∈ 𝑎) → (𝑡 ∈ (𝑆𝑎) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5756exlimdv 1934 . . . . . . 7 (((𝜑𝑦𝑌) ∧ (𝐺𝑦) ∈ 𝑎) → (∃𝑡 𝑡 ∈ (𝑆𝑎) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5820, 57syl5bi 244 . . . . . 6 (((𝜑𝑦𝑌) ∧ (𝐺𝑦) ∈ 𝑎) → ((𝑆𝑎) ≠ ∅ → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
5958expimpd 456 . . . . 5 ((𝜑𝑦𝑌) → (((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
6059rexlimdvw 3292 . . . 4 ((𝜑𝑦𝑌) → (∃𝑎𝐽 ((𝐺𝑦) ∈ 𝑎 ∧ (𝑆𝑎) ≠ ∅) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦)))
6119, 60mpd 15 . . 3 ((𝜑𝑦𝑌) → 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
6261ralrimiva 3184 . 2 (𝜑 → ∀𝑦𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))
63 sconntop 32477 . . . . 5 (𝐾 ∈ SConn → 𝐾 ∈ Top)
644, 63syl 17 . . . 4 (𝜑𝐾 ∈ Top)
652toptopon 21527 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
6664, 65sylib 220 . . 3 (𝜑𝐾 ∈ (TopOn‘𝑌))
67 cvmtop1 32509 . . . . 5 (𝐹 ∈ (𝐶 CovMap 𝐽) → 𝐶 ∈ Top)
683, 67syl 17 . . . 4 (𝜑𝐶 ∈ Top)
691toptopon 21527 . . . 4 (𝐶 ∈ Top ↔ 𝐶 ∈ (TopOn‘𝐵))
7068, 69sylib 220 . . 3 (𝜑𝐶 ∈ (TopOn‘𝐵))
71 cncnp 21890 . . 3 ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐶 ∈ (TopOn‘𝐵)) → (𝐻 ∈ (𝐾 Cn 𝐶) ↔ (𝐻:𝑌𝐵 ∧ ∀𝑦𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))))
7266, 70, 71syl2anc 586 . 2 (𝜑 → (𝐻 ∈ (𝐾 Cn 𝐶) ↔ (𝐻:𝑌𝐵 ∧ ∀𝑦𝑌 𝐻 ∈ ((𝐾 CnP 𝐶)‘𝑦))))
7311, 62, 72mpbir2and 711 1 (𝜑𝐻 ∈ (𝐾 Cn 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wne 3018  wral 3140  wrex 3141  {crab 3144  cdif 3935  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541  {csn 4569   cuni 4840  cmpt 5148  ccnv 5556  cres 5559  cima 5560  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  crio 7115  (class class class)co 7158  0cc0 10539  1c1 10540  t crest 16696  Topctop 21503  TopOnctopon 21520   Cn ccn 21834   CnP ccnp 21835  𝑛-Locally cnlly 22075  Homeochmeo 22363  IIcii 23485  PConncpconn 32468  SConncsconn 32469   CovMap ccvm 32504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-ec 8293  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-cn 21837  df-cnp 21838  df-cmp 21997  df-conn 22022  df-lly 22076  df-nlly 22077  df-tx 22172  df-hmeo 22365  df-xms 22932  df-ms 22933  df-tms 22934  df-ii 23487  df-htpy 23576  df-phtpy 23577  df-phtpc 23598  df-pco 23611  df-pconn 32470  df-sconn 32471  df-cvm 32505
This theorem is referenced by:  cvmlift3lem9  32576
  Copyright terms: Public domain W3C validator