Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem15 Structured version   Visualization version   GIF version

Theorem cvmliftlem15 32540
Description: Lemma for cvmlift 32541. Discharge the assumptions of cvmliftlem14 32539. The set of all open subsets 𝑢 of the unit interval such that 𝐺𝑢 is contained in an even covering of some open set in 𝐽 is a cover of II by the definition of a covering map, so by the Lebesgue number lemma lebnumii 23564, there is a subdivision of the closed unit interval into 𝑁 equal parts such that each part is entirely contained within one such open set of 𝐽. Then using finite choice ac6sfi 8756 to uniformly select one such subset and one even covering of each subset, we are ready to finish the proof with cvmliftlem14 32539. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
Assertion
Ref Expression
cvmliftlem15 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Distinct variable groups:   𝑣,𝐵   𝑓,𝑘,𝑠,𝑢,𝑣,𝐹   𝑃,𝑓,𝑘,𝑢,𝑣   𝐶,𝑓,𝑘,𝑠,𝑢,𝑣   𝜑,𝑓,𝑠   𝑆,𝑓,𝑘,𝑠,𝑢,𝑣   𝑓,𝐺,𝑘,𝑠,𝑢,𝑣   𝑓,𝐽,𝑘,𝑠,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝐵(𝑢,𝑓,𝑘,𝑠)   𝑃(𝑠)   𝑋(𝑣,𝑢,𝑓,𝑘,𝑠)

Proof of Theorem cvmliftlem15
Dummy variables 𝑏 𝑦 𝑧 𝑎 𝑐 𝑔 𝑗 𝑚 𝑛 𝑡 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . 3 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II
2 cvmliftlem.g . . . . . . . . . . 11 (𝜑𝐺 ∈ (II Cn 𝐽))
32ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝐺 ∈ (II Cn 𝐽))
4 simprl 769 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑗𝐽)
5 cnima 21867 . . . . . . . . . 10 ((𝐺 ∈ (II Cn 𝐽) ∧ 𝑗𝐽) → (𝐺𝑗) ∈ II)
63, 4, 5syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺𝑗) ∈ II)
7 simplr 767 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑥 ∈ (0[,]1))
8 simprrl 779 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺𝑥) ∈ 𝑗)
9 iiuni 23483 . . . . . . . . . . . . . 14 (0[,]1) = II
10 cvmliftlem.x . . . . . . . . . . . . . 14 𝑋 = 𝐽
119, 10cnf 21848 . . . . . . . . . . . . 13 (𝐺 ∈ (II Cn 𝐽) → 𝐺:(0[,]1)⟶𝑋)
122, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐺:(0[,]1)⟶𝑋)
1312ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝐺:(0[,]1)⟶𝑋)
14 ffn 6508 . . . . . . . . . . 11 (𝐺:(0[,]1)⟶𝑋𝐺 Fn (0[,]1))
15 elpreima 6822 . . . . . . . . . . 11 (𝐺 Fn (0[,]1) → (𝑥 ∈ (𝐺𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺𝑥) ∈ 𝑗)))
1613, 14, 153syl 18 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝑥 ∈ (𝐺𝑗) ↔ (𝑥 ∈ (0[,]1) ∧ (𝐺𝑥) ∈ 𝑗)))
177, 8, 16mpbir2and 711 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → 𝑥 ∈ (𝐺𝑗))
18 simprrr 780 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝑆𝑗) ≠ ∅)
19 ffun 6511 . . . . . . . . . . . . 13 (𝐺:(0[,]1)⟶𝑋 → Fun 𝐺)
20 funimacnv 6429 . . . . . . . . . . . . 13 (Fun 𝐺 → (𝐺 “ (𝐺𝑗)) = (𝑗 ∩ ran 𝐺))
2113, 19, 203syl 18 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺 “ (𝐺𝑗)) = (𝑗 ∩ ran 𝐺))
22 inss1 4204 . . . . . . . . . . . 12 (𝑗 ∩ ran 𝐺) ⊆ 𝑗
2321, 22eqsstrdi 4020 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → (𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
2423ralrimivw 3183 . . . . . . . . . 10 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∀𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
25 r19.2z 4439 . . . . . . . . . 10 (((𝑆𝑗) ≠ ∅ ∧ ∀𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗) → ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
2618, 24, 25syl2anc 586 . . . . . . . . 9 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)
27 eleq2 2901 . . . . . . . . . . 11 (𝑢 = (𝐺𝑗) → (𝑥𝑢𝑥 ∈ (𝐺𝑗)))
28 imaeq2 5919 . . . . . . . . . . . . 13 (𝑢 = (𝐺𝑗) → (𝐺𝑢) = (𝐺 “ (𝐺𝑗)))
2928sseq1d 3997 . . . . . . . . . . . 12 (𝑢 = (𝐺𝑗) → ((𝐺𝑢) ⊆ 𝑗 ↔ (𝐺 “ (𝐺𝑗)) ⊆ 𝑗))
3029rexbidv 3297 . . . . . . . . . . 11 (𝑢 = (𝐺𝑗) → (∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗 ↔ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗))
3127, 30anbi12d 632 . . . . . . . . . 10 (𝑢 = (𝐺𝑗) → ((𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ (𝑥 ∈ (𝐺𝑗) ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)))
3231rspcev 3622 . . . . . . . . 9 (((𝐺𝑗) ∈ II ∧ (𝑥 ∈ (𝐺𝑗) ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺 “ (𝐺𝑗)) ⊆ 𝑗)) → ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
336, 17, 26, 32syl12anc 834 . . . . . . . 8 (((𝜑𝑥 ∈ (0[,]1)) ∧ (𝑗𝐽 ∧ ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))) → ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
34 cvmliftlem.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
3534adantr 483 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → 𝐹 ∈ (𝐶 CovMap 𝐽))
3612ffvelrnda 6845 . . . . . . . . 9 ((𝜑𝑥 ∈ (0[,]1)) → (𝐺𝑥) ∈ 𝑋)
37 cvmliftlem.1 . . . . . . . . . 10 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3837, 10cvmcov 32505 . . . . . . . . 9 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝐺𝑥) ∈ 𝑋) → ∃𝑗𝐽 ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))
3935, 36, 38syl2anc 586 . . . . . . . 8 ((𝜑𝑥 ∈ (0[,]1)) → ∃𝑗𝐽 ((𝐺𝑥) ∈ 𝑗 ∧ (𝑆𝑗) ≠ ∅))
4033, 39reximddv 3275 . . . . . . 7 ((𝜑𝑥 ∈ (0[,]1)) → ∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
41 r19.42v 3350 . . . . . . . . 9 (∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
4241rexbii 3247 . . . . . . . 8 (∃𝑢 ∈ II ∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
43 rexcom 3355 . . . . . . . 8 (∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ ∃𝑢 ∈ II ∃𝑗𝐽 (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
44 elunirab 4843 . . . . . . . 8 (𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ↔ ∃𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗))
4542, 43, 443bitr4i 305 . . . . . . 7 (∃𝑗𝐽𝑢 ∈ II (𝑥𝑢 ∧ ∃𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗) ↔ 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
4640, 45sylib 220 . . . . . 6 ((𝜑𝑥 ∈ (0[,]1)) → 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
4746ex 415 . . . . 5 (𝜑 → (𝑥 ∈ (0[,]1) → 𝑥 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗}))
4847ssrdv 3972 . . . 4 (𝜑 → (0[,]1) ⊆ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
49 uniss 4852 . . . . . 6 ({𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II → {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II)
501, 49mp1i 13 . . . . 5 (𝜑 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II)
5150, 9sseqtrrdi 4017 . . . 4 (𝜑 {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ (0[,]1))
5248, 51eqssd 3983 . . 3 (𝜑 → (0[,]1) = {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗})
53 lebnumii 23564 . . 3 (({𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} ⊆ II ∧ (0[,]1) = {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗}) → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)
541, 52, 53sylancr 589 . 2 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣)
55 fzfi 13334 . . . . 5 (1...𝑛) ∈ Fin
56 imaeq2 5919 . . . . . . . . . 10 (𝑢 = 𝑣 → (𝐺𝑢) = (𝐺𝑣))
5756sseq1d 3997 . . . . . . . . 9 (𝑢 = 𝑣 → ((𝐺𝑢) ⊆ 𝑗 ↔ (𝐺𝑣) ⊆ 𝑗))
58572rexbidv 3300 . . . . . . . 8 (𝑢 = 𝑣 → (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗 ↔ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗))
5958rexrab 3686 . . . . . . 7 (∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 ↔ ∃𝑣 ∈ II (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣))
60 vex 3497 . . . . . . . . . . . . 13 𝑗 ∈ V
61 vex 3497 . . . . . . . . . . . . 13 𝑠 ∈ V
6260, 61op1std 7693 . . . . . . . . . . . 12 (𝑢 = ⟨𝑗, 𝑠⟩ → (1st𝑢) = 𝑗)
6362sseq2d 3998 . . . . . . . . . . 11 (𝑢 = ⟨𝑗, 𝑠⟩ → ((𝐺𝑣) ⊆ (1st𝑢) ↔ (𝐺𝑣) ⊆ 𝑗))
6463rexiunxp 5705 . . . . . . . . . 10 (∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺𝑣) ⊆ (1st𝑢) ↔ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗)
65 imass2 5959 . . . . . . . . . . . 12 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺𝑣))
66 sstr2 3973 . . . . . . . . . . . 12 ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (𝐺𝑣) → ((𝐺𝑣) ⊆ (1st𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6765, 66syl 17 . . . . . . . . . . 11 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ((𝐺𝑣) ⊆ (1st𝑢) → (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6867reximdv 3273 . . . . . . . . . 10 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺𝑣) ⊆ (1st𝑢) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
6964, 68syl5bir 245 . . . . . . . . 9 ((((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)))
7069impcom 410 . . . . . . . 8 ((∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7170rexlimivw 3282 . . . . . . 7 (∃𝑣 ∈ II (∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑣) ⊆ 𝑗 ∧ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣) → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7259, 71sylbi 219 . . . . . 6 (∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
7372ralimi 3160 . . . . 5 (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∀𝑘 ∈ (1...𝑛)∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢))
74 fveq2 6664 . . . . . . 7 (𝑢 = (𝑔𝑘) → (1st𝑢) = (1st ‘(𝑔𝑘)))
7574sseq2d 3998 . . . . . 6 (𝑢 = (𝑔𝑘) → ((𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢) ↔ (𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
7675ac6sfi 8756 . . . . 5 (((1...𝑛) ∈ Fin ∧ ∀𝑘 ∈ (1...𝑛)∃𝑢 𝑗𝐽 ({𝑗} × (𝑆𝑗))(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st𝑢)) → ∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
7755, 73, 76sylancr 589 . . . 4 (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))))
78 cvmliftlem.b . . . . . . 7 𝐵 = 𝐶
7934ad2antrr 724 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝐹 ∈ (𝐶 CovMap 𝐽))
802ad2antrr 724 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝐺 ∈ (II Cn 𝐽))
81 cvmliftlem.p . . . . . . . 8 (𝜑𝑃𝐵)
8281ad2antrr 724 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑃𝐵)
83 cvmliftlem.e . . . . . . . 8 (𝜑 → (𝐹𝑃) = (𝐺‘0))
8483ad2antrr 724 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → (𝐹𝑃) = (𝐺‘0))
85 simplr 767 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑛 ∈ ℕ)
86 simprl 769 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
87 sneq 4570 . . . . . . . . . . 11 (𝑗 = 𝑎 → {𝑗} = {𝑎})
88 fveq2 6664 . . . . . . . . . . 11 (𝑗 = 𝑎 → (𝑆𝑗) = (𝑆𝑎))
8987, 88xpeq12d 5580 . . . . . . . . . 10 (𝑗 = 𝑎 → ({𝑗} × (𝑆𝑗)) = ({𝑎} × (𝑆𝑎)))
9089cbviunv 4957 . . . . . . . . 9 𝑗𝐽 ({𝑗} × (𝑆𝑗)) = 𝑎𝐽 ({𝑎} × (𝑆𝑎))
91 feq3 6491 . . . . . . . . 9 ( 𝑗𝐽 ({𝑗} × (𝑆𝑗)) = 𝑎𝐽 ({𝑎} × (𝑆𝑎)) → (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎))))
9290, 91ax-mp 5 . . . . . . . 8 (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ↔ 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎)))
9386, 92sylib 220 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → 𝑔:(1...𝑛)⟶ 𝑎𝐽 ({𝑎} × (𝑆𝑎)))
94 simprr 771 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))
95 eqid 2821 . . . . . . 7 (topGen‘ran (,)) = (topGen‘ran (,))
96 2fveq3 6669 . . . . . . . . . . 11 (𝑡 = 𝑧 → ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)) = ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)))
9796cbvmptv 5161 . . . . . . . . . 10 (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)))
98 eleq2 2901 . . . . . . . . . . . . . . . 16 (𝑐 = 𝑏 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐 ↔ (𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
9998cbvriotavw 7118 . . . . . . . . . . . . . . 15 (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)
100 fveq1 6663 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑥 → (𝑦‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑤 − 1) / 𝑛)))
101100eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑥 → ((𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
102101riotabidv 7110 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
10399, 102syl5eq 2868 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐) = (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))
104103reseq2d 5847 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)))
105104cnveqd 5740 . . . . . . . . . . . 12 (𝑦 = 𝑥(𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)))
106105fveq1d 6666 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))
107106mpteq2dv 5154 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑧))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
10897, 107syl5eq 2868 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡))) = (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
109 oveq1 7157 . . . . . . . . . . . 12 (𝑤 = 𝑚 → (𝑤 − 1) = (𝑚 − 1))
110109oveq1d 7165 . . . . . . . . . . 11 (𝑤 = 𝑚 → ((𝑤 − 1) / 𝑛) = ((𝑚 − 1) / 𝑛))
111 oveq1 7157 . . . . . . . . . . 11 (𝑤 = 𝑚 → (𝑤 / 𝑛) = (𝑚 / 𝑛))
112110, 111oveq12d 7168 . . . . . . . . . 10 (𝑤 = 𝑚 → (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) = (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)))
113 2fveq3 6669 . . . . . . . . . . . . . 14 (𝑤 = 𝑚 → (2nd ‘(𝑔𝑤)) = (2nd ‘(𝑔𝑚)))
114110fveq2d 6668 . . . . . . . . . . . . . . 15 (𝑤 = 𝑚 → (𝑥‘((𝑤 − 1) / 𝑛)) = (𝑥‘((𝑚 − 1) / 𝑛)))
115114eleq1d 2897 . . . . . . . . . . . . . 14 (𝑤 = 𝑚 → ((𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏 ↔ (𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))
116113, 115riotaeqbidv 7111 . . . . . . . . . . . . 13 (𝑤 = 𝑚 → (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏) = (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))
117116reseq2d 5847 . . . . . . . . . . . 12 (𝑤 = 𝑚 → (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)))
118117cnveqd 5740 . . . . . . . . . . 11 (𝑤 = 𝑚(𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏)) = (𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏)))
119118fveq1d 6666 . . . . . . . . . 10 (𝑤 = 𝑚 → ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)) = ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))
120112, 119mpteq12dv 5143 . . . . . . . . 9 (𝑤 = 𝑚 → (𝑧 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑤))(𝑥‘((𝑤 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))) = (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
121108, 120cbvmpov 7243 . . . . . . . 8 (𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧))))
122 seqeq2 13367 . . . . . . . 8 ((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))) = (𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))) → seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})) = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})))
123121, 122ax-mp 5 . . . . . . 7 seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩})) = seq0((𝑥 ∈ V, 𝑚 ∈ ℕ ↦ (𝑧 ∈ (((𝑚 − 1) / 𝑛)[,](𝑚 / 𝑛)) ↦ ((𝐹 ↾ (𝑏 ∈ (2nd ‘(𝑔𝑚))(𝑥‘((𝑚 − 1) / 𝑛)) ∈ 𝑏))‘(𝐺𝑧)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))
124 eqid 2821 . . . . . . 7 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑘) = 𝑘 ∈ (1...𝑛)(seq0((𝑦 ∈ V, 𝑤 ∈ ℕ ↦ (𝑡 ∈ (((𝑤 − 1) / 𝑛)[,](𝑤 / 𝑛)) ↦ ((𝐹 ↾ (𝑐 ∈ (2nd ‘(𝑔𝑤))(𝑦‘((𝑤 − 1) / 𝑛)) ∈ 𝑐))‘(𝐺𝑡)))), (( I ↾ ℕ) ∪ {⟨0, {⟨0, 𝑃⟩}⟩}))‘𝑘)
12537, 78, 10, 79, 80, 82, 84, 85, 93, 94, 95, 123, 124cvmliftlem14 32539 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ (𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘)))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
126125ex 415 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
127126exlimdv 1930 . . . 4 ((𝜑𝑛 ∈ ℕ) → (∃𝑔(𝑔:(1...𝑛)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)) ∧ ∀𝑘 ∈ (1...𝑛)(𝐺 “ (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛))) ⊆ (1st ‘(𝑔𝑘))) → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
12877, 127syl5 34 . . 3 ((𝜑𝑛 ∈ ℕ) → (∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
129128rexlimdva 3284 . 2 (𝜑 → (∃𝑛 ∈ ℕ ∀𝑘 ∈ (1...𝑛)∃𝑣 ∈ {𝑢 ∈ II ∣ ∃𝑗𝐽𝑠 ∈ (𝑆𝑗)(𝐺𝑢) ⊆ 𝑗} (((𝑘 − 1) / 𝑛)[,](𝑘 / 𝑛)) ⊆ 𝑣 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃)))
13054, 129mpd 15 1 (𝜑 → ∃!𝑓 ∈ (II Cn 𝐶)((𝐹𝑓) = 𝐺 ∧ (𝑓‘0) = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  𝒫 cpw 4538  {csn 4560  cop 4566   cuni 4831   ciun 4911  cmpt 5138   I cid 5453   × cxp 5547  ccnv 5548  ran crn 5550  cres 5551  cima 5552  ccom 5553  Fun wfun 6343   Fn wfn 6344  wf 6345  cfv 6349  crio 7107  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  Fincfn 8503  0cc0 10531  1c1 10532  cmin 10864   / cdiv 11291  cn 11632  (,)cioo 12732  [,]cicc 12735  ...cfz 12886  seqcseq 13363  t crest 16688  topGenctg 16705   Cn ccn 21826  Homeochmeo 22355  IIcii 23477   CovMap ccvm 32497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-ec 8285  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-fi 8869  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-ioo 12736  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-hom 16583  df-cco 16584  df-rest 16690  df-topn 16691  df-0g 16709  df-gsum 16710  df-topgen 16711  df-pt 16712  df-prds 16715  df-xrs 16769  df-qtop 16774  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-psmet 20531  df-xmet 20532  df-met 20533  df-bl 20534  df-mopn 20535  df-cnfld 20540  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cld 21621  df-ntr 21622  df-cls 21623  df-nei 21700  df-cn 21829  df-cnp 21830  df-cmp 21989  df-conn 22014  df-lly 22068  df-nlly 22069  df-tx 22164  df-hmeo 22357  df-xms 22924  df-ms 22925  df-tms 22926  df-ii 23479  df-htpy 23568  df-phtpy 23569  df-phtpc 23590  df-pconn 32463  df-sconn 32464  df-cvm 32498
This theorem is referenced by:  cvmlift  32541
  Copyright terms: Public domain W3C validator