Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmliftlem2 Structured version   Visualization version   GIF version

Theorem cvmliftlem2 31394
Description: Lemma for cvmlift 31407. 𝑊 = [(𝑘 − 1) / 𝑁, 𝑘 / 𝑁] is a subset of [0, 1] for each 𝑀 ∈ (1...𝑁). (Contributed by Mario Carneiro, 16-Feb-2015.)
Hypotheses
Ref Expression
cvmliftlem.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f (𝜑𝐹 ∈ (𝐶 CovMap 𝐽))
cvmliftlem.g (𝜑𝐺 ∈ (II Cn 𝐽))
cvmliftlem.p (𝜑𝑃𝐵)
cvmliftlem.e (𝜑 → (𝐹𝑃) = (𝐺‘0))
cvmliftlem.n (𝜑𝑁 ∈ ℕ)
cvmliftlem.t (𝜑𝑇:(1...𝑁)⟶ 𝑗𝐽 ({𝑗} × (𝑆𝑗)))
cvmliftlem.a (𝜑 → ∀𝑘 ∈ (1...𝑁)(𝐺 “ (((𝑘 − 1) / 𝑁)[,](𝑘 / 𝑁))) ⊆ (1st ‘(𝑇𝑘)))
cvmliftlem.l 𝐿 = (topGen‘ran (,))
cvmliftlem1.m ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
cvmliftlem3.3 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
Assertion
Ref Expression
cvmliftlem2 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Distinct variable groups:   𝑣,𝐵   𝑗,𝑘,𝑠,𝑢,𝑣,𝐹   𝑗,𝑀,𝑘,𝑠,𝑢,𝑣   𝑃,𝑘,𝑢,𝑣   𝐶,𝑗,𝑘,𝑠,𝑢,𝑣   𝜑,𝑗,𝑠   𝑘,𝑁,𝑢,𝑣   𝑆,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝑋   𝑗,𝐺,𝑘,𝑠,𝑢,𝑣   𝑇,𝑗,𝑘,𝑠,𝑢,𝑣   𝑗,𝐽,𝑘,𝑠,𝑢,𝑣   𝑘,𝑊
Allowed substitution hints:   𝜑(𝑣,𝑢,𝑘)   𝜓(𝑣,𝑢,𝑗,𝑘,𝑠)   𝐵(𝑢,𝑗,𝑘,𝑠)   𝑃(𝑗,𝑠)   𝐿(𝑣,𝑢,𝑗,𝑘,𝑠)   𝑁(𝑗,𝑠)   𝑊(𝑣,𝑢,𝑗,𝑠)   𝑋(𝑣,𝑢,𝑘,𝑠)

Proof of Theorem cvmliftlem2
StepHypRef Expression
1 cvmliftlem3.3 . 2 𝑊 = (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁))
2 0red 10079 . . 3 ((𝜑𝜓) → 0 ∈ ℝ)
3 1red 10093 . . 3 ((𝜑𝜓) → 1 ∈ ℝ)
4 cvmliftlem1.m . . . . . . 7 ((𝜑𝜓) → 𝑀 ∈ (1...𝑁))
5 elfznn 12408 . . . . . . 7 (𝑀 ∈ (1...𝑁) → 𝑀 ∈ ℕ)
64, 5syl 17 . . . . . 6 ((𝜑𝜓) → 𝑀 ∈ ℕ)
76nnred 11073 . . . . 5 ((𝜑𝜓) → 𝑀 ∈ ℝ)
8 peano2rem 10386 . . . . 5 (𝑀 ∈ ℝ → (𝑀 − 1) ∈ ℝ)
97, 8syl 17 . . . 4 ((𝜑𝜓) → (𝑀 − 1) ∈ ℝ)
10 nnm1nn0 11372 . . . . . 6 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
116, 10syl 17 . . . . 5 ((𝜑𝜓) → (𝑀 − 1) ∈ ℕ0)
1211nn0ge0d 11392 . . . 4 ((𝜑𝜓) → 0 ≤ (𝑀 − 1))
13 cvmliftlem.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
1413adantr 480 . . . . 5 ((𝜑𝜓) → 𝑁 ∈ ℕ)
1514nnred 11073 . . . 4 ((𝜑𝜓) → 𝑁 ∈ ℝ)
1614nngt0d 11102 . . . 4 ((𝜑𝜓) → 0 < 𝑁)
17 divge0 10930 . . . 4 ((((𝑀 − 1) ∈ ℝ ∧ 0 ≤ (𝑀 − 1)) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → 0 ≤ ((𝑀 − 1) / 𝑁))
189, 12, 15, 16, 17syl22anc 1367 . . 3 ((𝜑𝜓) → 0 ≤ ((𝑀 − 1) / 𝑁))
19 elfzle2 12383 . . . . . 6 (𝑀 ∈ (1...𝑁) → 𝑀𝑁)
204, 19syl 17 . . . . 5 ((𝜑𝜓) → 𝑀𝑁)
2114nncnd 11074 . . . . . 6 ((𝜑𝜓) → 𝑁 ∈ ℂ)
2221mulid1d 10095 . . . . 5 ((𝜑𝜓) → (𝑁 · 1) = 𝑁)
2320, 22breqtrrd 4713 . . . 4 ((𝜑𝜓) → 𝑀 ≤ (𝑁 · 1))
24 ledivmul 10937 . . . . 5 ((𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
257, 3, 15, 16, 24syl112anc 1370 . . . 4 ((𝜑𝜓) → ((𝑀 / 𝑁) ≤ 1 ↔ 𝑀 ≤ (𝑁 · 1)))
2623, 25mpbird 247 . . 3 ((𝜑𝜓) → (𝑀 / 𝑁) ≤ 1)
27 iccss 12279 . . 3 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ ((𝑀 − 1) / 𝑁) ∧ (𝑀 / 𝑁) ≤ 1)) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
282, 3, 18, 26, 27syl22anc 1367 . 2 ((𝜑𝜓) → (((𝑀 − 1) / 𝑁)[,](𝑀 / 𝑁)) ⊆ (0[,]1))
291, 28syl5eqss 3682 1 ((𝜑𝜓) → 𝑊 ⊆ (0[,]1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  {crab 2945  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cuni 4468   ciun 4552   class class class wbr 4685  cmpt 4762   × cxp 5141  ccnv 5142  ran crn 5144  cres 5145  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  1st c1st 7208  cr 9973  0cc0 9974  1c1 9975   · cmul 9979   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  0cn0 11330  (,)cioo 12213  [,]cicc 12216  ...cfz 12364  t crest 16128  topGenctg 16145   Cn ccn 21076  Homeochmeo 21604  IIcii 22725   CovMap ccvm 31363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-icc 12220  df-fz 12365
This theorem is referenced by:  cvmliftlem3  31395  cvmliftlem6  31398  cvmliftlem8  31400
  Copyright terms: Public domain W3C validator