Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsdisj Structured version   Visualization version   GIF version

Theorem cvmsdisj 31378
Description: An even covering of 𝑈 is a disjoint union. (Contributed by Mario Carneiro, 13-Feb-2015.)
Hypothesis
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
Assertion
Ref Expression
cvmsdisj ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣   𝑘,𝐽,𝑠,𝑢,𝑣   𝑈,𝑘,𝑠,𝑢,𝑣   𝑇,𝑠,𝑢,𝑣   𝑢,𝐴,𝑣   𝑣,𝐵
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)

Proof of Theorem cvmsdisj
StepHypRef Expression
1 df-ne 2824 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 cvmcov.1 . . . . . . . . . . 11 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
32cvmsi 31373 . . . . . . . . . 10 (𝑇 ∈ (𝑆𝑈) → (𝑈𝐽 ∧ (𝑇𝐶𝑇 ≠ ∅) ∧ ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))))
43simp3d 1095 . . . . . . . . 9 (𝑇 ∈ (𝑆𝑈) → ( 𝑇 = (𝐹𝑈) ∧ ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈)))))
54simprd 478 . . . . . . . 8 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))))
6 simpl 472 . . . . . . . . 9 ((∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
76ralimi 2981 . . . . . . . 8 (∀𝑢𝑇 (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑈))) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
85, 7syl 17 . . . . . . 7 (𝑇 ∈ (𝑆𝑈) → ∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅)
9 sneq 4220 . . . . . . . . . 10 (𝑢 = 𝐴 → {𝑢} = {𝐴})
109difeq2d 3761 . . . . . . . . 9 (𝑢 = 𝐴 → (𝑇 ∖ {𝑢}) = (𝑇 ∖ {𝐴}))
11 ineq1 3840 . . . . . . . . . 10 (𝑢 = 𝐴 → (𝑢𝑣) = (𝐴𝑣))
1211eqeq1d 2653 . . . . . . . . 9 (𝑢 = 𝐴 → ((𝑢𝑣) = ∅ ↔ (𝐴𝑣) = ∅))
1310, 12raleqbidv 3182 . . . . . . . 8 (𝑢 = 𝐴 → (∀𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ↔ ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅))
1413rspccva 3339 . . . . . . 7 ((∀𝑢𝑇𝑣 ∈ (𝑇 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
158, 14sylan 487 . . . . . 6 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅)
16 necom 2876 . . . . . . 7 (𝐴𝐵𝐵𝐴)
17 eldifsn 4350 . . . . . . . 8 (𝐵 ∈ (𝑇 ∖ {𝐴}) ↔ (𝐵𝑇𝐵𝐴))
1817biimpri 218 . . . . . . 7 ((𝐵𝑇𝐵𝐴) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
1916, 18sylan2b 491 . . . . . 6 ((𝐵𝑇𝐴𝐵) → 𝐵 ∈ (𝑇 ∖ {𝐴}))
20 ineq2 3841 . . . . . . . 8 (𝑣 = 𝐵 → (𝐴𝑣) = (𝐴𝐵))
2120eqeq1d 2653 . . . . . . 7 (𝑣 = 𝐵 → ((𝐴𝑣) = ∅ ↔ (𝐴𝐵) = ∅))
2221rspccv 3337 . . . . . 6 (∀𝑣 ∈ (𝑇 ∖ {𝐴})(𝐴𝑣) = ∅ → (𝐵 ∈ (𝑇 ∖ {𝐴}) → (𝐴𝐵) = ∅))
2315, 19, 22syl2im 40 . . . . 5 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → ((𝐵𝑇𝐴𝐵) → (𝐴𝐵) = ∅))
2423expd 451 . . . 4 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇) → (𝐵𝑇 → (𝐴𝐵 → (𝐴𝐵) = ∅)))
25243impia 1280 . . 3 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴𝐵 → (𝐴𝐵) = ∅))
261, 25syl5bir 233 . 2 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (¬ 𝐴 = 𝐵 → (𝐴𝐵) = ∅))
2726orrd 392 1 ((𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝑇𝐵𝑇) → (𝐴 = 𝐵 ∨ (𝐴𝐵) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  {crab 2945  cdif 3604  cin 3606  wss 3607  c0 3948  𝒫 cpw 4191  {csn 4210   cuni 4468  cmpt 4762  ccnv 5142  cres 5145  cima 5146  cfv 5926  (class class class)co 6690  t crest 16128  Homeochmeo 21604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fv 5934  df-ov 6693
This theorem is referenced by:  cvmscld  31381  cvmsss2  31382  cvmseu  31384
  Copyright terms: Public domain W3C validator