HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvnbtwn Structured version   Visualization version   GIF version

Theorem cvnbtwn 29033
Description: The covers relation implies no in-betweenness. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvnbtwn ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))

Proof of Theorem cvnbtwn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cvbr 29029 . . . 4 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
2 psseq2 3679 . . . . . . . . 9 (𝑥 = 𝐶 → (𝐴𝑥𝐴𝐶))
3 psseq1 3678 . . . . . . . . 9 (𝑥 = 𝐶 → (𝑥𝐵𝐶𝐵))
42, 3anbi12d 746 . . . . . . . 8 (𝑥 = 𝐶 → ((𝐴𝑥𝑥𝐵) ↔ (𝐴𝐶𝐶𝐵)))
54rspcev 3299 . . . . . . 7 ((𝐶C ∧ (𝐴𝐶𝐶𝐵)) → ∃𝑥C (𝐴𝑥𝑥𝐵))
65ex 450 . . . . . 6 (𝐶C → ((𝐴𝐶𝐶𝐵) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
76con3rr3 151 . . . . 5 (¬ ∃𝑥C (𝐴𝑥𝑥𝐵) → (𝐶C → ¬ (𝐴𝐶𝐶𝐵)))
87adantl 482 . . . 4 ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) → (𝐶C → ¬ (𝐴𝐶𝐶𝐵)))
91, 8syl6bi 243 . . 3 ((𝐴C𝐵C ) → (𝐴 𝐵 → (𝐶C → ¬ (𝐴𝐶𝐶𝐵))))
109com23 86 . 2 ((𝐴C𝐵C ) → (𝐶C → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵))))
11103impia 1258 1 ((𝐴C𝐵C𝐶C ) → (𝐴 𝐵 → ¬ (𝐴𝐶𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2909  wpss 3561   class class class wbr 4623   C cch 27674   ccv 27709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-br 4624  df-opab 4684  df-cv 29026
This theorem is referenced by:  cvnbtwn2  29034  cvnbtwn3  29035  cvnbtwn4  29036  cvntr  29039
  Copyright terms: Public domain W3C validator