Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvratlem Structured version   Visualization version   GIF version

Theorem cvratlem 34226
Description: Lemma for cvrat 34227. (atcvatlem 29132 analog.) (Contributed by NM, 22-Nov-2011.)
Hypotheses
Ref Expression
cvrat.b 𝐵 = (Base‘𝐾)
cvrat.s < = (lt‘𝐾)
cvrat.j = (join‘𝐾)
cvrat.z 0 = (0.‘𝐾)
cvrat.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvratlem (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))

Proof of Theorem cvratlem
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 hlatl 34166 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
21adantr 481 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝐾 ∈ AtLat)
3 simpr1 1065 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → 𝑋𝐵)
4 cvrat.b . . . . . 6 𝐵 = (Base‘𝐾)
5 eqid 2621 . . . . . 6 (le‘𝐾) = (le‘𝐾)
6 cvrat.z . . . . . 6 0 = (0.‘𝐾)
7 cvrat.a . . . . . 6 𝐴 = (Atoms‘𝐾)
84, 5, 6, 7atlex 34122 . . . . 5 ((𝐾 ∈ AtLat ∧ 𝑋𝐵𝑋0 ) → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋)
983expia 1264 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑋𝐵) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
102, 3, 9syl2anc 692 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → ∃𝑟𝐴 𝑟(le‘𝐾)𝑋))
1113ad2ant1 1080 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
12 simp22 1093 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
13 simp3 1061 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
145, 7atcmp 34117 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
1511, 12, 13, 14syl3anc 1323 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟𝑃 = 𝑟))
16 breq1 4626 . . . . . . . . . . . . . . . . 17 (𝑃 = 𝑟 → (𝑃(le‘𝐾)𝑋𝑟(le‘𝐾)𝑋))
1716biimprd 238 . . . . . . . . . . . . . . . 16 (𝑃 = 𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
1815, 17syl6bi 243 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃(le‘𝐾)𝑟 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
1918com23 86 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋)))
20 con3 149 . . . . . . . . . . . . . 14 ((𝑃(le‘𝐾)𝑟𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟))
2119, 20syl6 35 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑃(le‘𝐾)𝑟)))
2221impd 447 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → ¬ 𝑃(le‘𝐾)𝑟))
23 simp1 1059 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
244, 7atbase 34095 . . . . . . . . . . . . . 14 (𝑟𝐴𝑟𝐵)
25243ad2ant3 1082 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑟𝐵)
26 cvrat.j . . . . . . . . . . . . . 14 = (join‘𝐾)
27 eqid 2621 . . . . . . . . . . . . . 14 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
284, 5, 26, 27, 7cvr1 34215 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑟𝐵𝑃𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
2923, 25, 12, 28syl3anc 1323 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (¬ 𝑃(le‘𝐾)𝑟𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3022, 29sylibd 229 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃)))
3130imp 445 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑟 𝑃))
32 hllat 34169 . . . . . . . . . . . . 13 (𝐾 ∈ HL → 𝐾 ∈ Lat)
33323ad2ant1 1080 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Lat)
344, 7atbase 34095 . . . . . . . . . . . . 13 (𝑃𝐴𝑃𝐵)
3512, 34syl 17 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃𝐵)
364, 26latjcom 16999 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) = (𝑟 𝑃))
3733, 35, 25, 36syl3anc 1323 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) = (𝑟 𝑃))
3837adantr 481 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → (𝑃 𝑟) = (𝑟 𝑃))
3931, 38breqtrrd 4651 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
4039adantrrl 759 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟( ⋖ ‘𝐾)(𝑃 𝑟))
415, 26, 7hlatlej1 34180 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4223, 12, 13, 41syl3anc 1323 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑟))
4342adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑟))
445, 7atcmp 34117 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ AtLat ∧ 𝑟𝐴𝑃𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
4511, 13, 12, 44syl3anc 1323 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃𝑟 = 𝑃))
46 breq1 4626 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4746biimpd 219 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋))
4845, 47syl6bi 243 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)𝑋𝑃(le‘𝐾)𝑋)))
4948com23 86 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋)))
50 con3 149 . . . . . . . . . . . . . . 15 ((𝑟(le‘𝐾)𝑃𝑃(le‘𝐾)𝑋) → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃))
5149, 50syl6 35 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (¬ 𝑃(le‘𝐾)𝑋 → ¬ 𝑟(le‘𝐾)𝑃)))
5251imp32 449 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ ¬ 𝑃(le‘𝐾)𝑋)) → ¬ 𝑟(le‘𝐾)𝑃)
5352adantrrl 759 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ¬ 𝑟(le‘𝐾)𝑃)
54 simprl 793 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)𝑋)
55 simp21 1092 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑋𝐵)
56 simp23 1094 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐴)
574, 7atbase 34095 . . . . . . . . . . . . . . . . . . 19 (𝑄𝐴𝑄𝐵)
5856, 57syl 17 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑄𝐵)
594, 26latjcl 16991 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
6033, 35, 58, 59syl3anc 1323 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑄) ∈ 𝐵)
6123, 55, 603jca 1240 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵))
62 cvrat.s . . . . . . . . . . . . . . . . . 18 < = (lt‘𝐾)
635, 62pltle 16901 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) → (𝑋 < (𝑃 𝑄) → 𝑋(le‘𝐾)(𝑃 𝑄)))
6463imp 445 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6561, 64sylan 488 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑋 < (𝑃 𝑄)) → 𝑋(le‘𝐾)(𝑃 𝑄))
6665adantrl 751 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑋(le‘𝐾)(𝑃 𝑄))
67 hlpos 34171 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ HL → 𝐾 ∈ Poset)
68673ad2ant1 1080 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ Poset)
694, 5postr 16893 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ Poset ∧ (𝑟𝐵𝑋𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7068, 25, 55, 60, 69syl13anc 1325 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7170adantr 481 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → ((𝑟(le‘𝐾)𝑋𝑋(le‘𝐾)(𝑃 𝑄)) → 𝑟(le‘𝐾)(𝑃 𝑄)))
7254, 66, 71mp2and 714 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑄))) → 𝑟(le‘𝐾)(𝑃 𝑄))
7372adantrrr 760 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟(le‘𝐾)(𝑃 𝑄))
744, 5, 26, 7hlexch1 34187 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵) ∧ ¬ 𝑟(le‘𝐾)𝑃) → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟)))
75743expia 1264 . . . . . . . . . . . . . . 15 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → (¬ 𝑟(le‘𝐾)𝑃 → (𝑟(le‘𝐾)(𝑃 𝑄) → 𝑄(le‘𝐾)(𝑃 𝑟))))
7675impd 447 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑄𝐴𝑃𝐵)) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7723, 13, 56, 35, 76syl13anc 1325 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7877adantr 481 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((¬ 𝑟(le‘𝐾)𝑃𝑟(le‘𝐾)(𝑃 𝑄)) → 𝑄(le‘𝐾)(𝑃 𝑟)))
7953, 73, 78mp2and 714 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑄(le‘𝐾)(𝑃 𝑟))
804, 26latjcl 16991 . . . . . . . . . . . . . 14 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑟𝐵) → (𝑃 𝑟) ∈ 𝐵)
8133, 35, 25, 80syl3anc 1323 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑃 𝑟) ∈ 𝐵)
824, 5, 26latjle12 17002 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑄𝐵 ∧ (𝑃 𝑟) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8333, 35, 58, 81, 82syl13anc 1325 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8483adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑟) ∧ 𝑄(le‘𝐾)(𝑃 𝑟)) ↔ (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟)))
8543, 79, 84mpbi2and 955 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄)(le‘𝐾)(𝑃 𝑟))
865, 26, 7hlatlej1 34180 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8723, 12, 56, 86syl3anc 1323 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → 𝑃(le‘𝐾)(𝑃 𝑄))
8887adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑃(le‘𝐾)(𝑃 𝑄))
894, 5, 26latjle12 17002 . . . . . . . . . . . . 13 ((𝐾 ∈ Lat ∧ (𝑃𝐵𝑟𝐵 ∧ (𝑃 𝑄) ∈ 𝐵)) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9033, 35, 25, 60, 89syl13anc 1325 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9190adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃(le‘𝐾)(𝑃 𝑄) ∧ 𝑟(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)))
9288, 73, 91mpbi2and 955 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄))
9333, 60, 813jca 1240 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
9493adantr 481 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵))
954, 5latasymb 16994 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵 ∧ (𝑃 𝑟) ∈ 𝐵) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9694, 95syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (((𝑃 𝑄)(le‘𝐾)(𝑃 𝑟) ∧ (𝑃 𝑟)(le‘𝐾)(𝑃 𝑄)) ↔ (𝑃 𝑄) = (𝑃 𝑟)))
9785, 92, 96mpbi2and 955 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → (𝑃 𝑄) = (𝑃 𝑟))
98 breq2 4627 . . . . . . . . . . . 12 ((𝑃 𝑄) = (𝑃 𝑟) → (𝑋 < (𝑃 𝑄) ↔ 𝑋 < (𝑃 𝑟)))
9998biimpcd 239 . . . . . . . . . . 11 (𝑋 < (𝑃 𝑄) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10099adantr 481 . . . . . . . . . 10 ((𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
101100ad2antll 764 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑃 𝑄) = (𝑃 𝑟) → 𝑋 < (𝑃 𝑟)))
10297, 101mpd 15 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋 < (𝑃 𝑟))
1034, 5, 62, 27cvrnbtwn3 34082 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) ↔ 𝑟 = 𝑋))
104103biimpd 219 . . . . . . . . . . . . . 14 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵) ∧ 𝑟( ⋖ ‘𝐾)(𝑃 𝑟)) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
1051043expia 1264 . . . . . . . . . . . . 13 ((𝐾 ∈ Poset ∧ (𝑟𝐵 ∧ (𝑃 𝑟) ∈ 𝐵𝑋𝐵)) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
10668, 25, 81, 55, 105syl13anc 1325 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → ((𝑟(le‘𝐾)𝑋𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋)))
107106exp4a 632 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
108107com23 86 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑟( ⋖ ‘𝐾)(𝑃 𝑟) → (𝑋 < (𝑃 𝑟) → 𝑟 = 𝑋))))
109108imp4b 612 . . . . . . . . 9 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ 𝑟(le‘𝐾)𝑋) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
110109adantrr 752 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → ((𝑟( ⋖ ‘𝐾)(𝑃 𝑟) ∧ 𝑋 < (𝑃 𝑟)) → 𝑟 = 𝑋))
11140, 102, 110mp2and 714 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟 = 𝑋)
112 simpl3 1064 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑟𝐴)
113111, 112eqeltrrd 2699 . . . . . 6 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) ∧ (𝑟(le‘𝐾)𝑋 ∧ (𝑋 < (𝑃 𝑄) ∧ ¬ 𝑃(le‘𝐾)𝑋))) → 𝑋𝐴)
114113exp45 641 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
1151143expa 1262 . . . 4 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ 𝑟𝐴) → (𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
116115rexlimdva 3026 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (∃𝑟𝐴 𝑟(le‘𝐾)𝑋 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
11710, 116syld 47 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) → (𝑋0 → (𝑋 < (𝑃 𝑄) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))))
118117imp32 449 1 (((𝐾 ∈ HL ∧ (𝑋𝐵𝑃𝐴𝑄𝐴)) ∧ (𝑋0𝑋 < (𝑃 𝑄))) → (¬ 𝑃(le‘𝐾)𝑋𝑋𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2909   class class class wbr 4623  cfv 5857  (class class class)co 6615  Basecbs 15800  lecple 15888  Posetcpo 16880  ltcplt 16881  joincjn 16884  0.cp0 16977  Latclat 16985  ccvr 34068  Atomscatm 34069  AtLatcal 34070  HLchlt 34156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-lat 16986  df-clat 17048  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157
This theorem is referenced by:  cvrat  34227
  Copyright terms: Public domain W3C validator