Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrcmp Structured version   Visualization version   GIF version

Theorem cvrcmp 36421
Description: If two lattice elements that cover a third are comparable, then they are equal. (Contributed by NM, 6-Feb-2012.)
Hypotheses
Ref Expression
cvrcmp.b 𝐵 = (Base‘𝐾)
cvrcmp.l = (le‘𝐾)
cvrcmp.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrcmp ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))

Proof of Theorem cvrcmp
StepHypRef Expression
1 simpl1 1187 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝐾 ∈ Poset)
2 simpl23 1249 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐵)
3 simpl21 1247 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋𝐵)
4 simpl3l 1224 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐶𝑋)
5 cvrcmp.b . . . . . 6 𝐵 = (Base‘𝐾)
6 cvrcmp.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
75, 6cvrne 36419 . . . . 5 (((𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵) ∧ 𝑍𝐶𝑋) → 𝑍𝑋)
81, 2, 3, 4, 7syl31anc 1369 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝑋)
9 cvrcmp.l . . . . . . . 8 = (le‘𝐾)
105, 9, 6cvrle 36416 . . . . . . 7 (((𝐾 ∈ Poset ∧ 𝑍𝐵𝑋𝐵) ∧ 𝑍𝐶𝑋) → 𝑍 𝑋)
111, 2, 3, 4, 10syl31anc 1369 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍 𝑋)
12 simpr 487 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋 𝑌)
13 simpl22 1248 . . . . . . 7 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑌𝐵)
14 simpl3r 1225 . . . . . . 7 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑍𝐶𝑌)
155, 9, 6cvrnbtwn4 36417 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑍𝐵𝑌𝐵𝑋𝐵) ∧ 𝑍𝐶𝑌) → ((𝑍 𝑋𝑋 𝑌) ↔ (𝑍 = 𝑋𝑋 = 𝑌)))
161, 2, 13, 3, 14, 15syl131anc 1379 . . . . . 6 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → ((𝑍 𝑋𝑋 𝑌) ↔ (𝑍 = 𝑋𝑋 = 𝑌)))
1711, 12, 16mpbi2and 710 . . . . 5 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → (𝑍 = 𝑋𝑋 = 𝑌))
18 neor 3110 . . . . 5 ((𝑍 = 𝑋𝑋 = 𝑌) ↔ (𝑍𝑋𝑋 = 𝑌))
1917, 18sylib 220 . . . 4 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → (𝑍𝑋𝑋 = 𝑌))
208, 19mpd 15 . . 3 (((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) ∧ 𝑋 𝑌) → 𝑋 = 𝑌)
2120ex 415 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
22 simp1 1132 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝐾 ∈ Poset)
23 simp21 1202 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝑋𝐵)
245, 9posref 17563 . . . 4 ((𝐾 ∈ Poset ∧ 𝑋𝐵) → 𝑋 𝑋)
2522, 23, 24syl2anc 586 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → 𝑋 𝑋)
26 breq2 5072 . . 3 (𝑋 = 𝑌 → (𝑋 𝑋𝑋 𝑌))
2725, 26syl5ibcom 247 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 = 𝑌𝑋 𝑌))
2821, 27impbid 214 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝑍𝐶𝑋𝑍𝐶𝑌)) → (𝑋 𝑌𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  Basecbs 16485  lecple 16574  Posetcpo 17552  ccvr 36400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-proset 17540  df-poset 17558  df-plt 17570  df-covers 36404
This theorem is referenced by:  cvrcmp2  36422  atcmp  36449  llncmp  36660  lplncmp  36700  lvolcmp  36755  lhp2lt  37139
  Copyright terms: Public domain W3C validator