Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrfval Structured version   Visualization version   GIF version

Theorem cvrfval 34032
Description: Value of covers relation "is covered by". (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
cvrfval.b 𝐵 = (Base‘𝐾)
cvrfval.s < = (lt‘𝐾)
cvrfval.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrfval (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐾,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐶(𝑥,𝑦,𝑧)   < (𝑥,𝑦,𝑧)

Proof of Theorem cvrfval
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3198 . 2 (𝐾𝐴𝐾 ∈ V)
2 cvrfval.c . . 3 𝐶 = ( ⋖ ‘𝐾)
3 fveq2 6148 . . . . . . . . 9 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 cvrfval.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2673 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65eleq2d 2684 . . . . . . 7 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥𝐵))
75eleq2d 2684 . . . . . . 7 (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦𝐵))
86, 7anbi12d 746 . . . . . 6 (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ↔ (𝑥𝐵𝑦𝐵)))
9 fveq2 6148 . . . . . . . 8 (𝑝 = 𝐾 → (lt‘𝑝) = (lt‘𝐾))
10 cvrfval.s . . . . . . . 8 < = (lt‘𝐾)
119, 10syl6eqr 2673 . . . . . . 7 (𝑝 = 𝐾 → (lt‘𝑝) = < )
1211breqd 4624 . . . . . 6 (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑦𝑥 < 𝑦))
1311breqd 4624 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑥(lt‘𝑝)𝑧𝑥 < 𝑧))
1411breqd 4624 . . . . . . . . 9 (𝑝 = 𝐾 → (𝑧(lt‘𝑝)𝑦𝑧 < 𝑦))
1513, 14anbi12d 746 . . . . . . . 8 (𝑝 = 𝐾 → ((𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ (𝑥 < 𝑧𝑧 < 𝑦)))
165, 15rexeqbidv 3142 . . . . . . 7 (𝑝 = 𝐾 → (∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))
1716notbid 308 . . . . . 6 (𝑝 = 𝐾 → (¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦) ↔ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))
188, 12, 173anbi123d 1396 . . . . 5 (𝑝 = 𝐾 → (((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
1918opabbidv 4678 . . . 4 (𝑝 = 𝐾 → {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
20 df-covers 34030 . . . 4 ⋖ = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝)) ∧ 𝑥(lt‘𝑝)𝑦 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑥(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑦))})
21 3anass 1040 . . . . . 6 (((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))))
2221opabbii 4679 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))}
23 fvex 6158 . . . . . . . 8 (Base‘𝐾) ∈ V
244, 23eqeltri 2694 . . . . . . 7 𝐵 ∈ V
2524, 24xpex 6915 . . . . . 6 (𝐵 × 𝐵) ∈ V
26 opabssxp 5154 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ⊆ (𝐵 × 𝐵)
2725, 26ssexi 4763 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦)))} ∈ V
2822, 27eqeltri 2694 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))} ∈ V
2919, 20, 28fvmpt 6239 . . 3 (𝐾 ∈ V → ( ⋖ ‘𝐾) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
302, 29syl5eq 2667 . 2 (𝐾 ∈ V → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
311, 30syl 17 1 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 < 𝑦 ∧ ¬ ∃𝑧𝐵 (𝑥 < 𝑧𝑧 < 𝑦))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wrex 2908  Vcvv 3186   class class class wbr 4613  {copab 4672   × cxp 5072  cfv 5847  Basecbs 15781  ltcplt 16862  ccvr 34026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-iota 5810  df-fun 5849  df-fv 5855  df-covers 34030
This theorem is referenced by:  cvrval  34033
  Copyright terms: Public domain W3C validator