Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrnbtwn2 Structured version   Visualization version   GIF version

Theorem cvrnbtwn2 34388
 Description: The covers relation implies no in-betweenness. (cvnbtwn2 29130 analog.) (Contributed by NM, 17-Nov-2011.)
Hypotheses
Ref Expression
cvrletr.b 𝐵 = (Base‘𝐾)
cvrletr.l = (le‘𝐾)
cvrletr.s < = (lt‘𝐾)
cvrletr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
cvrnbtwn2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) ↔ 𝑍 = 𝑌))

Proof of Theorem cvrnbtwn2
StepHypRef Expression
1 cvrletr.b . . . . . 6 𝐵 = (Base‘𝐾)
2 cvrletr.s . . . . . 6 < = (lt‘𝐾)
3 cvrletr.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
41, 2, 3cvrnbtwn 34384 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ¬ (𝑋 < 𝑍𝑍 < 𝑌))
543expia 1266 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
6 iman 440 . . . . 5 (((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌) ↔ ¬ ((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌))
7 simpl 473 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝐾 ∈ Poset)
8 simpr3 1068 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
9 simpr2 1067 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
10 cvrletr.l . . . . . . . . . . 11 = (le‘𝐾)
1110, 2pltval 16954 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ 𝑍𝐵𝑌𝐵) → (𝑍 < 𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
127, 8, 9, 11syl3anc 1325 . . . . . . . . 9 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 < 𝑌 ↔ (𝑍 𝑌𝑍𝑌)))
13 df-ne 2794 . . . . . . . . . 10 (𝑍𝑌 ↔ ¬ 𝑍 = 𝑌)
1413anbi2i 730 . . . . . . . . 9 ((𝑍 𝑌𝑍𝑌) ↔ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌))
1512, 14syl6bb 276 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 < 𝑌 ↔ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌)))
1615anbi2d 740 . . . . . . 7 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 < 𝑍𝑍 < 𝑌) ↔ (𝑋 < 𝑍 ∧ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌))))
17 anass 681 . . . . . . 7 (((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ (𝑋 < 𝑍 ∧ (𝑍 𝑌 ∧ ¬ 𝑍 = 𝑌)))
1816, 17syl6rbbr 279 . . . . . 6 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ (𝑋 < 𝑍𝑍 < 𝑌)))
1918notbid 308 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ ((𝑋 < 𝑍𝑍 𝑌) ∧ ¬ 𝑍 = 𝑌) ↔ ¬ (𝑋 < 𝑍𝑍 < 𝑌)))
206, 19syl5rbb 273 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (¬ (𝑋 < 𝑍𝑍 < 𝑌) ↔ ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌)))
215, 20sylibd 229 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌 → ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌)))
22213impia 1260 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) → 𝑍 = 𝑌))
231, 2, 3cvrlt 34383 . . . . . . 7 (((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
2423ex 450 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐶𝑌𝑋 < 𝑌))
25243adant3r3 1275 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐶𝑌𝑋 < 𝑌))
26253impia 1260 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → 𝑋 < 𝑌)
27 breq2 4655 . . . 4 (𝑍 = 𝑌 → (𝑋 < 𝑍𝑋 < 𝑌))
2826, 27syl5ibrcom 237 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑋 < 𝑍))
291, 10posref 16945 . . . . . 6 ((𝐾 ∈ Poset ∧ 𝑌𝐵) → 𝑌 𝑌)
30293ad2antr2 1226 . . . . 5 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌 𝑌)
31 breq1 4654 . . . . 5 (𝑍 = 𝑌 → (𝑍 𝑌𝑌 𝑌))
3230, 31syl5ibrcom 237 . . . 4 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑍 = 𝑌𝑍 𝑌))
33323adant3 1080 . . 3 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌𝑍 𝑌))
3428, 33jcad 555 . 2 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → (𝑍 = 𝑌 → (𝑋 < 𝑍𝑍 𝑌)))
3522, 34impbid 202 1 ((𝐾 ∈ Poset ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ 𝑋𝐶𝑌) → ((𝑋 < 𝑍𝑍 𝑌) ↔ 𝑍 = 𝑌))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989   ≠ wne 2793   class class class wbr 4651  ‘cfv 5886  Basecbs 15851  lecple 15942  Posetcpo 16934  ltcplt 16935   ⋖ ccvr 34375 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-ral 2916  df-rex 2917  df-rab 2920  df-v 3200  df-sbc 3434  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-op 4182  df-uni 4435  df-br 4652  df-opab 4711  df-mpt 4728  df-id 5022  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-iota 5849  df-fun 5888  df-fv 5894  df-preset 16922  df-poset 16940  df-plt 16952  df-covers 34379 This theorem is referenced by:  cvrval3  34525  cvrexchlem  34531
 Copyright terms: Public domain W3C validator