Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvrval5 Structured version   Visualization version   GIF version

Theorem cvrval5 36553
Description: Binary relation expressing 𝑋 covers 𝑋 𝑌. (Contributed by NM, 7-Dec-2012.)
Hypotheses
Ref Expression
cvrval5.b 𝐵 = (Base‘𝐾)
cvrval5.l = (le‘𝐾)
cvrval5.j = (join‘𝐾)
cvrval5.m = (meet‘𝐾)
cvrval5.c 𝐶 = ( ⋖ ‘𝐾)
cvrval5.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvrval5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑌,𝑝
Allowed substitution hint:   (𝑝)

Proof of Theorem cvrval5
StepHypRef Expression
1 simp1 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ HL)
2 hllat 36501 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3 cvrval5.b . . . . 5 𝐵 = (Base‘𝐾)
4 cvrval5.m . . . . 5 = (meet‘𝐾)
53, 4latmcl 17664 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
62, 5syl3an1 1159 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
7 simp2 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
8 cvrval5.l . . . 4 = (le‘𝐾)
9 cvrval5.j . . . 4 = (join‘𝐾)
10 cvrval5.c . . . 4 𝐶 = ( ⋖ ‘𝐾)
11 cvrval5.a . . . 4 𝐴 = (Atoms‘𝐾)
123, 8, 9, 10, 11cvrval3 36551 . . 3 ((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
131, 6, 7, 12syl3anc 1367 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
1423ad2ant1 1129 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → 𝐾 ∈ Lat)
1514ad2antrr 724 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝐾 ∈ Lat)
166ad2antrr 724 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑋 𝑌) ∈ 𝐵)
173, 11atbase 36427 . . . . . . . . . . . 12 (𝑝𝐴𝑝𝐵)
1817ad2antlr 725 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝𝐵)
193, 8, 9latlej2 17673 . . . . . . . . . . 11 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → 𝑝 ((𝑋 𝑌) 𝑝))
2015, 16, 18, 19syl3anc 1367 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 ((𝑋 𝑌) 𝑝))
21 simpr 487 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑋 𝑌) 𝑝) = 𝑋)
2220, 21breqtrd 5094 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑝 𝑋)
2322biantrurd 535 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 𝑌 ↔ (𝑝 𝑋𝑝 𝑌)))
24 simpll2 1209 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑋𝐵)
25 simpll3 1210 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → 𝑌𝐵)
263, 8, 4latlem12 17690 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ (𝑝𝐵𝑋𝐵𝑌𝐵)) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2715, 18, 24, 25, 26syl13anc 1368 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → ((𝑝 𝑋𝑝 𝑌) ↔ 𝑝 (𝑋 𝑌)))
2823, 27bitr2d 282 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (𝑝 (𝑋 𝑌) ↔ 𝑝 𝑌))
2928notbid 320 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌))
3029ex 415 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 → (¬ 𝑝 (𝑋 𝑌) ↔ ¬ 𝑝 𝑌)))
3130pm5.32rd 580 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋)))
3214adantr 483 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝐾 ∈ Lat)
336adantr 483 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (𝑋 𝑌) ∈ 𝐵)
3417adantl 484 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → 𝑝𝐵)
353, 9latjcom 17671 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑋 𝑌) ∈ 𝐵𝑝𝐵) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3632, 33, 34, 35syl3anc 1367 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((𝑋 𝑌) 𝑝) = (𝑝 (𝑋 𝑌)))
3736eqeq1d 2825 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → (((𝑋 𝑌) 𝑝) = 𝑋 ↔ (𝑝 (𝑋 𝑌)) = 𝑋))
3837anbi2d 630 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 𝑌 ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
3931, 38bitrd 281 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) ∧ 𝑝𝐴) → ((¬ 𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ (¬ 𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4039rexbidva 3298 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → (∃𝑝𝐴𝑝 (𝑋 𝑌) ∧ ((𝑋 𝑌) 𝑝) = 𝑋) ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
4113, 40bitrd 281 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 𝑌)𝐶𝑋 ↔ ∃𝑝𝐴𝑝 𝑌 ∧ (𝑝 (𝑋 𝑌)) = 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  Basecbs 16485  lecple 16574  joincjn 17556  meetcmee 17557  Latclat 17657  ccvr 36400  Atomscatm 36401  HLchlt 36488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-proset 17540  df-poset 17558  df-plt 17570  df-lub 17586  df-glb 17587  df-join 17588  df-meet 17589  df-p0 17651  df-lat 17658  df-clat 17720  df-oposet 36314  df-ol 36316  df-oml 36317  df-covers 36404  df-ats 36405  df-atl 36436  df-cvlat 36460  df-hlat 36489
This theorem is referenced by:  lhpmcvr2  37162
  Copyright terms: Public domain W3C validator