MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvsdiv Structured version   Visualization version   GIF version

Theorem cvsdiv 23730
Description: Division of the scalar ring of a subcomplex vector space. (Contributed by Thierry Arnoux, 22-May-2019.)
Hypotheses
Ref Expression
cvsdiv.f 𝐹 = (Scalar‘𝑊)
cvsdiv.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
cvsdiv ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))

Proof of Theorem cvsdiv
StepHypRef Expression
1 simpl 485 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂVec)
21cvsclm 23724 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝑊 ∈ ℂMod)
3 cvsdiv.f . . . . 5 𝐹 = (Scalar‘𝑊)
4 cvsdiv.k . . . . 5 𝐾 = (Base‘𝐹)
53, 4clmsubrg 23664 . . . 4 (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld))
62, 5syl 17 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐾 ∈ (SubRing‘ℂfld))
7 simpr1 1190 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐴𝐾)
8 simpr2 1191 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵𝐾)
9 simpr3 1192 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ≠ 0)
10 eldifsn 4712 . . . . 5 (𝐵 ∈ (𝐾 ∖ {0}) ↔ (𝐵𝐾𝐵 ≠ 0))
118, 9, 10sylanbrc 585 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (𝐾 ∖ {0}))
123, 4cvsunit 23729 . . . . . 6 (𝑊 ∈ ℂVec → (𝐾 ∖ {0}) = (Unit‘𝐹))
131, 12syl 17 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘𝐹))
143, 4clmsca 23663 . . . . . . 7 (𝑊 ∈ ℂMod → 𝐹 = (ℂflds 𝐾))
152, 14syl 17 . . . . . 6 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐹 = (ℂflds 𝐾))
1615fveq2d 6668 . . . . 5 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (Unit‘𝐹) = (Unit‘(ℂflds 𝐾)))
1713, 16eqtrd 2856 . . . 4 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐾 ∖ {0}) = (Unit‘(ℂflds 𝐾)))
1811, 17eleqtrd 2915 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → 𝐵 ∈ (Unit‘(ℂflds 𝐾)))
19 eqid 2821 . . . 4 (ℂflds 𝐾) = (ℂflds 𝐾)
20 cnflddiv 20569 . . . 4 / = (/r‘ℂfld)
21 eqid 2821 . . . 4 (Unit‘(ℂflds 𝐾)) = (Unit‘(ℂflds 𝐾))
22 eqid 2821 . . . 4 (/r‘(ℂflds 𝐾)) = (/r‘(ℂflds 𝐾))
2319, 20, 21, 22subrgdv 19546 . . 3 ((𝐾 ∈ (SubRing‘ℂfld) ∧ 𝐴𝐾𝐵 ∈ (Unit‘(ℂflds 𝐾))) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
246, 7, 18, 23syl3anc 1367 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2515fveq2d 6668 . . 3 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (/r𝐹) = (/r‘(ℂflds 𝐾)))
2625oveqd 7167 . 2 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴(/r𝐹)𝐵) = (𝐴(/r‘(ℂflds 𝐾))𝐵))
2724, 26eqtr4d 2859 1 ((𝑊 ∈ ℂVec ∧ (𝐴𝐾𝐵𝐾𝐵 ≠ 0)) → (𝐴 / 𝐵) = (𝐴(/r𝐹)𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  cdif 3932  {csn 4560  cfv 6349  (class class class)co 7150  0cc0 10531   / cdiv 11291  Basecbs 16477  s cress 16478  Scalarcsca 16562  Unitcui 19383  /rcdvr 19426  SubRingcsubrg 19525  fldccnfld 20539  ℂModcclm 23660  ℂVecccvs 23721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-cmn 18902  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-subrg 19527  df-lvec 19869  df-cnfld 20540  df-clm 23661  df-cvs 23722
This theorem is referenced by:  cvsdivcl  23731
  Copyright terms: Public domain W3C validator