MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cvxcl Structured version   Visualization version   GIF version

Theorem cvxcl 24409
Description: Closure of a 0-1 linear combination in a convex set. (Contributed by Mario Carneiro, 21-Jun-2015.)
Hypotheses
Ref Expression
cvxcl.1 (𝜑𝐷 ⊆ ℝ)
cvxcl.2 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷)
Assertion
Ref Expression
cvxcl ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
Distinct variable groups:   𝑥,𝑦,𝐷   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)

Proof of Theorem cvxcl
StepHypRef Expression
1 cvxcl.2 . . . . . 6 ((𝜑 ∧ (𝑥𝐷𝑦𝐷)) → (𝑥[,]𝑦) ⊆ 𝐷)
21ralrimivva 2858 . . . . 5 (𝜑 → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
32ad2antrr 757 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
4 simpr1 1059 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋𝐷)
5 simpr2 1060 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌𝐷)
6 oveq1 6432 . . . . . . . 8 (𝑥 = 𝑋 → (𝑥[,]𝑦) = (𝑋[,]𝑦))
76sseq1d 3499 . . . . . . 7 (𝑥 = 𝑋 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑦) ⊆ 𝐷))
8 oveq2 6433 . . . . . . . 8 (𝑦 = 𝑌 → (𝑋[,]𝑦) = (𝑋[,]𝑌))
98sseq1d 3499 . . . . . . 7 (𝑦 = 𝑌 → ((𝑋[,]𝑦) ⊆ 𝐷 ↔ (𝑋[,]𝑌) ⊆ 𝐷))
107, 9rspc2v 3197 . . . . . 6 ((𝑋𝐷𝑌𝐷) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
114, 5, 10syl2anc 690 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
1211adantr 479 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑋[,]𝑌) ⊆ 𝐷))
133, 12mpd 15 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ 𝐷)
14 ax-1cn 9747 . . . . . . . 8 1 ∈ ℂ
15 unitssre 12055 . . . . . . . . . 10 (0[,]1) ⊆ ℝ
16 simpr3 1061 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ (0[,]1))
1715, 16sseldi 3470 . . . . . . . . 9 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℝ)
1817recnd 9821 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑇 ∈ ℂ)
19 nncan 10059 . . . . . . . 8 ((1 ∈ ℂ ∧ 𝑇 ∈ ℂ) → (1 − (1 − 𝑇)) = 𝑇)
2014, 18, 19sylancr 693 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − (1 − 𝑇)) = 𝑇)
2120oveq1d 6440 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − (1 − 𝑇)) · 𝑋) = (𝑇 · 𝑋))
2221oveq1d 6440 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
2322adantr 479 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)))
24 cvxcl.1 . . . . . . . 8 (𝜑𝐷 ⊆ ℝ)
2524adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝐷 ⊆ ℝ)
2625, 4sseldd 3473 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℝ)
2726adantr 479 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ)
2825, 5sseldd 3473 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℝ)
2928adantr 479 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ)
30 simpr 475 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
31 simplr3 1097 . . . . . 6 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → 𝑇 ∈ (0[,]1))
32 iirev 22463 . . . . . 6 (𝑇 ∈ (0[,]1) → (1 − 𝑇) ∈ (0[,]1))
3331, 32syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (1 − 𝑇) ∈ (0[,]1))
34 lincmb01cmp 12051 . . . . 5 (((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ ∧ 𝑋 < 𝑌) ∧ (1 − 𝑇) ∈ (0[,]1)) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3527, 29, 30, 33, 34syl31anc 1320 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → (((1 − (1 − 𝑇)) · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3623, 35eqeltrrd 2593 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑋[,]𝑌))
3713, 36sseldd 3473 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 < 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
38 oveq2 6433 . . . . 5 (𝑋 = 𝑌 → (𝑇 · 𝑋) = (𝑇 · 𝑌))
3938oveq1d 6440 . . . 4 (𝑋 = 𝑌 → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
40 pncan3 10038 . . . . . . 7 ((𝑇 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑇 + (1 − 𝑇)) = 1)
4118, 14, 40sylancl 692 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 + (1 − 𝑇)) = 1)
4241oveq1d 6440 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = (1 · 𝑌))
43 1re 9792 . . . . . . . 8 1 ∈ ℝ
44 resubcl 10094 . . . . . . . 8 ((1 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (1 − 𝑇) ∈ ℝ)
4543, 17, 44sylancr 693 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℝ)
4645recnd 9821 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 − 𝑇) ∈ ℂ)
4728recnd 9821 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑌 ∈ ℂ)
4818, 46, 47adddird 9818 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 + (1 − 𝑇)) · 𝑌) = ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)))
4947mulid2d 9811 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (1 · 𝑌) = 𝑌)
5042, 48, 493eqtr3d 2556 . . . 4 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑌) + ((1 − 𝑇) · 𝑌)) = 𝑌)
5139, 50sylan9eqr 2570 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = 𝑌)
525adantr 479 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → 𝑌𝐷)
5351, 52eqeltrd 2592 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑋 = 𝑌) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
542ad2antrr 757 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷)
55 oveq1 6432 . . . . . . . 8 (𝑥 = 𝑌 → (𝑥[,]𝑦) = (𝑌[,]𝑦))
5655sseq1d 3499 . . . . . . 7 (𝑥 = 𝑌 → ((𝑥[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑦) ⊆ 𝐷))
57 oveq2 6433 . . . . . . . 8 (𝑦 = 𝑋 → (𝑌[,]𝑦) = (𝑌[,]𝑋))
5857sseq1d 3499 . . . . . . 7 (𝑦 = 𝑋 → ((𝑌[,]𝑦) ⊆ 𝐷 ↔ (𝑌[,]𝑋) ⊆ 𝐷))
5956, 58rspc2v 3197 . . . . . 6 ((𝑌𝐷𝑋𝐷) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
605, 4, 59syl2anc 690 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
6160adantr 479 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (∀𝑥𝐷𝑦𝐷 (𝑥[,]𝑦) ⊆ 𝐷 → (𝑌[,]𝑋) ⊆ 𝐷))
6254, 61mpd 15 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (𝑌[,]𝑋) ⊆ 𝐷)
6326recnd 9821 . . . . . . 7 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → 𝑋 ∈ ℂ)
6418, 63mulcld 9813 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑇 · 𝑋) ∈ ℂ)
6546, 47mulcld 9813 . . . . . 6 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((1 − 𝑇) · 𝑌) ∈ ℂ)
6664, 65addcomd 9987 . . . . 5 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)))
6766adantr 479 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) = (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)))
6828adantr 479 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 ∈ ℝ)
6926adantr 479 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑋 ∈ ℝ)
70 simpr 475 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑌 < 𝑋)
71 simplr3 1097 . . . . 5 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → 𝑇 ∈ (0[,]1))
72 lincmb01cmp 12051 . . . . 5 (((𝑌 ∈ ℝ ∧ 𝑋 ∈ ℝ ∧ 𝑌 < 𝑋) ∧ 𝑇 ∈ (0[,]1)) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋))
7368, 69, 70, 71, 72syl31anc 1320 . . . 4 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → (((1 − 𝑇) · 𝑌) + (𝑇 · 𝑋)) ∈ (𝑌[,]𝑋))
7467, 73eqeltrd 2592 . . 3 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ (𝑌[,]𝑋))
7562, 74sseldd 3473 . 2 (((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) ∧ 𝑌 < 𝑋) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
7626, 28lttri4d 9927 . 2 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → (𝑋 < 𝑌𝑋 = 𝑌𝑌 < 𝑋))
7737, 53, 75, 76mpjao3dan 1386 1 ((𝜑 ∧ (𝑋𝐷𝑌𝐷𝑇 ∈ (0[,]1))) → ((𝑇 · 𝑋) + ((1 − 𝑇) · 𝑌)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1938  wral 2800  wss 3444   class class class wbr 4481  (class class class)co 6425  cc 9687  cr 9688  0cc0 9689  1c1 9690   + caddc 9692   · cmul 9694   < clt 9827  cmin 10015  [,]cicc 11914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746  ax-1cn 9747  ax-icn 9748  ax-addcl 9749  ax-addrcl 9750  ax-mulcl 9751  ax-mulrcl 9752  ax-mulcom 9753  ax-addass 9754  ax-mulass 9755  ax-distr 9756  ax-i2m1 9757  ax-1ne0 9758  ax-1rid 9759  ax-rnegex 9760  ax-rrecex 9761  ax-cnre 9762  ax-pre-lttri 9763  ax-pre-lttrn 9764  ax-pre-ltadd 9765  ax-pre-mulgt0 9766
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-po 4853  df-so 4854  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6387  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832  df-le 9833  df-sub 10017  df-neg 10018  df-rp 11571  df-icc 11918
This theorem is referenced by:  scvxcvx  24410  jensenlem2  24412  amgmlem  24414
  Copyright terms: Public domain W3C validator