MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxp2limlem Structured version   Visualization version   GIF version

Theorem cxp2limlem 24447
Description: A linear factor grows slower than any exponential with base greater than 1. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
cxp2limlem ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Distinct variable group:   𝐴,𝑛

Proof of Theorem cxp2limlem
StepHypRef Expression
1 0red 9898 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 ∈ ℝ)
2 2rp 11672 . . . . 5 2 ∈ ℝ+
3 rplogcl 24099 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℝ+)
4 2z 11245 . . . . . 6 2 ∈ ℤ
5 rpexpcl 12699 . . . . . 6 (((log‘𝐴) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((log‘𝐴)↑2) ∈ ℝ+)
63, 4, 5sylancl 693 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → ((log‘𝐴)↑2) ∈ ℝ+)
7 rpdivcl 11691 . . . . 5 ((2 ∈ ℝ+ ∧ ((log‘𝐴)↑2) ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
82, 6, 7sylancr 694 . . . 4 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
98rpcnd 11709 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
10 divrcnv 14372 . . 3 ((2 / ((log‘𝐴)↑2)) ∈ ℂ → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
119, 10syl 17 . 2 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ ((2 / ((log‘𝐴)↑2)) / 𝑛)) ⇝𝑟 0)
128rpred 11707 . . 3 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (2 / ((log‘𝐴)↑2)) ∈ ℝ)
13 rerpdivcl 11696 . . 3 (((2 / ((log‘𝐴)↑2)) ∈ ℝ ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
1412, 13sylan 487 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((2 / ((log‘𝐴)↑2)) / 𝑛) ∈ ℝ)
15 simpr 476 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ+)
16 simpl 472 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
17 1red 9912 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 ∈ ℝ)
18 0lt1 10402 . . . . . . . 8 0 < 1
1918a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 1)
20 simpr 476 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 1 < 𝐴)
211, 17, 16, 19, 20lttrd 10050 . . . . . 6 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 0 < 𝐴)
2216, 21elrpd 11704 . . . . 5 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ+)
23 rpre 11674 . . . . 5 (𝑛 ∈ ℝ+𝑛 ∈ ℝ)
24 rpcxpcl 24167 . . . . 5 ((𝐴 ∈ ℝ+𝑛 ∈ ℝ) → (𝐴𝑐𝑛) ∈ ℝ+)
2522, 23, 24syl2an 493 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) ∈ ℝ+)
2615, 25rpdivcld 11724 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ+)
2726rpred 11707 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ∈ ℝ)
283adantr 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℝ+)
2915, 28rpmulcld 11723 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ+)
3029rpred 11707 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 · (log‘𝐴)) ∈ ℝ)
3130resqcld 12855 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) ∈ ℝ)
3231rehalfcld 11129 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) ∈ ℝ)
33 1rp 11671 . . . . . . . . . . 11 1 ∈ ℝ+
34 rpaddcl 11689 . . . . . . . . . . 11 ((1 ∈ ℝ+ ∧ (𝑛 · (log‘𝐴)) ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3533, 29, 34sylancr 694 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ+)
3635rpred 11707 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (1 + (𝑛 · (log‘𝐴))) ∈ ℝ)
3736, 32readdcld 9926 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) ∈ ℝ)
3830reefcld 14606 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (exp‘(𝑛 · (log‘𝐴))) ∈ ℝ)
3932, 35ltaddrp2d 11741 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)))
40 efgt1p2 14632 . . . . . . . . 9 ((𝑛 · (log‘𝐴)) ∈ ℝ+ → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4129, 40syl 17 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((1 + (𝑛 · (log‘𝐴))) + (((𝑛 · (log‘𝐴))↑2) / 2)) < (exp‘(𝑛 · (log‘𝐴))))
4232, 37, 38, 39, 41lttrd 10050 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) < (exp‘(𝑛 · (log‘𝐴))))
4323adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℝ)
4443recnd 9925 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ∈ ℂ)
4544sqcld 12826 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℂ)
46 2cnd 10943 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ∈ ℂ)
476adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℝ+)
4847rpcnd 11709 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ∈ ℂ)
49 2ne0 10963 . . . . . . . . . 10 2 ≠ 0
5049a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 2 ≠ 0)
5147rpne0d 11712 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((log‘𝐴)↑2) ≠ 0)
5245, 46, 48, 50, 51divdiv2d 10685 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
533rpcnd 11709 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (log‘𝐴) ∈ ℂ)
5453adantr 480 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (log‘𝐴) ∈ ℂ)
5544, 54sqmuld 12840 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (log‘𝐴))↑2) = ((𝑛↑2) · ((log‘𝐴)↑2)))
5655oveq1d 6542 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛 · (log‘𝐴))↑2) / 2) = (((𝑛↑2) · ((log‘𝐴)↑2)) / 2))
5752, 56eqtr4d 2647 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) = (((𝑛 · (log‘𝐴))↑2) / 2))
5816recnd 9925 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
5958adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℂ)
6022adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ∈ ℝ+)
6160rpne0d 11712 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝐴 ≠ 0)
6259, 61, 44cxpefd 24203 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝐴𝑐𝑛) = (exp‘(𝑛 · (log‘𝐴))))
6342, 57, 623brtr4d 4610 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛))
64 rpexpcl 12699 . . . . . . . . 9 ((𝑛 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑛↑2) ∈ ℝ+)
6515, 4, 64sylancl 693 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ∈ ℝ+)
668adantr 480 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℝ+)
6765, 66rpdivcld 11724 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛↑2) / (2 / ((log‘𝐴)↑2))) ∈ ℝ+)
6867, 25, 15ltdiv2d 11730 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (((𝑛↑2) / (2 / ((log‘𝐴)↑2))) < (𝐴𝑐𝑛) ↔ (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2))))))
6963, 68mpbid 221 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))))
709adantr 480 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ∈ ℂ)
7165rpne0d 11712 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) ≠ 0)
7266rpne0d 11712 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (2 / ((log‘𝐴)↑2)) ≠ 0)
7344, 45, 70, 71, 72divdiv2d 10685 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)))
7444sqvald 12825 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛↑2) = (𝑛 · 𝑛))
7574oveq2d 6543 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛↑2)) = ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)))
76 rpne0 11683 . . . . . . . 8 (𝑛 ∈ ℝ+𝑛 ≠ 0)
7776adantl 481 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 𝑛 ≠ 0)
7870, 44, 44, 77, 77divcan5d 10679 . . . . . 6 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → ((𝑛 · (2 / ((log‘𝐴)↑2))) / (𝑛 · 𝑛)) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
7973, 75, 783eqtrd 2648 . . . . 5 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / ((𝑛↑2) / (2 / ((log‘𝐴)↑2)))) = ((2 / ((log‘𝐴)↑2)) / 𝑛))
8069, 79breqtrd 4604 . . . 4 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) < ((2 / ((log‘𝐴)↑2)) / 𝑛))
8127, 14, 80ltled 10037 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8281adantrr 749 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → (𝑛 / (𝐴𝑐𝑛)) ≤ ((2 / ((log‘𝐴)↑2)) / 𝑛))
8326rpge0d 11711 . . 3 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ 𝑛 ∈ ℝ+) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
8483adantrr 749 . 2 (((𝐴 ∈ ℝ ∧ 1 < 𝐴) ∧ (𝑛 ∈ ℝ+ ∧ 0 ≤ 𝑛)) → 0 ≤ (𝑛 / (𝐴𝑐𝑛)))
851, 1, 11, 14, 27, 82, 84rlimsqz2 14178 1 ((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (𝑛 ∈ ℝ+ ↦ (𝑛 / (𝐴𝑐𝑛))) ⇝𝑟 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 1977  wne 2780   class class class wbr 4578  cmpt 4638  cfv 5790  (class class class)co 6527  cc 9791  cr 9792  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798   < clt 9931  cle 9932   / cdiv 10536  2c2 10920  cz 11213  +crp 11667  cexp 12680  𝑟 crli 14013  expce 14580  logclog 24050  𝑐ccxp 24051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ioc 12010  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-fac 12881  df-bc 12910  df-hash 12938  df-shft 13604  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-limsup 13999  df-clim 14016  df-rlim 14017  df-sum 14214  df-ef 14586  df-sin 14588  df-cos 14589  df-pi 14591  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-lp 20698  df-perf 20699  df-cn 20789  df-cnp 20790  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cncf 22437  df-limc 23381  df-dv 23382  df-log 24052  df-cxp 24053
This theorem is referenced by:  cxp2lim  24448  cxploglim  24449
  Copyright terms: Public domain W3C validator